[1] YANG M,WANG K,LIU B,et al.Hypoxic-ischemic encephalopathy:pathogenesis and promising therapies[J].Mol Neurobiol,2025,62(2):2105-2122.
[2] PEDROZA-GARCÍA K A,CALDERÓN-VALLEJO D,LUIS QUINTANAR J.Neonatal hypoxic-ischemic encephalopathy:perspectives of neuroprotective and neuroregenerative treatments[J].Neuropediatrics,2022,53(6):402-417.
[3] MARQUES K L,RODRIGUES V,BALDUCI C T N,et al.Emerging therapeutic strategies in hypoxic-ischemic encephalopathy:a focus on cognitive outcomes[J].Front Pharmacol,2024,15:1347529.
[4] ZHAO M,ZHU P,FUJINO M,et al.Oxidative stress in hypoxic-ischemic encephalopathy:molecular mechanisms and therapeutic strategies[J].Int J Mol Sci,2016,17(12):2078.
[5] YANG L,ZHAO H,CUI H.Treatment and new progress of neonatal hypoxic-ischemic brain damage[J].Histol Histopathol,2020,35(9):929-936.
[6] WU Y W,COMSTOCK B A,GONZALEZ F F,et al.Trial of erythropoietin for hypoxic-ischemic encephalopathy in newborns[J].N Engl J Med,2022,387(2):148-159.
[7] TETOROU K,SISA C,IQBAL A,et al.Current therapies for neonatal hypoxic-ischaemic and infection-sensitised hypoxic-ischaemic brain damage[J].Front Synaptic Neurosci,2021,13:709301.
[8] ELDAROV C,STARODUBTSEVA N,SHEVTSOVA Y,et al.Dried blood spot metabolome features of ischemic-hypoxic encephalopathy:a neonatal rat model[J].Int J Mol Sci,2024,25(16):8903.
[9] GALA A A D,KUMAR H,SEDANI S,et al.Alterations in the stool microbiome in newborns undergoing mild therapeutic hypothermia after hypoxic-ischemic encephalopathy[J].Dev Neurosci,2022,44(4-5):373-383.
[10] NI Y,WANG Z,MA L,et al.Pilose antler polypeptides ameliorate inflammation and oxidative stress and improves gut microbiota in hypoxic-ischemic injured rats[J].Nutr Res,2019,64:93-108.
[11] CASTILLO-RUIZ A,MOSLEY M,GEORGE A J,et al.The microbiota influences cell death and microglial colonization in the perinatal mouse brain[J].Brain Behav Immun,2018,67:218-229.
[12] GAO Y,XIE D,WANG Y,et al.Short-chain fatty acids reduce oligodendrocyte precursor cells loss by inhibiting the activation of astrocytes via the SGK1/IL-6 signalling pathway[J].Neurochem Res,2022,47(11):3476-3489.
[13] GUO H H,SHEN H R,TANG M Z,et al.Microbiota-derived short-chain fatty acids mediate the effects of Dengzhan Shengmai in ameliorating cerebral ischemia via the gut-brain axis[J].J Ethnopharmacol,2023,306:116158.
[14] CHEN G,LI F,DU J.Change of gut microbiome structure in preterm infants with hypoxic ischemic encephalopathy induced by apnea[J].Pediatr Neonatol,2023,64(4):455-464.
[15] NI Y,TONG Q,XU M,et al.Gut microbiota-induced modulation of the central nervous system function in Parkinson's disease through the gut-brain axis and short-chain fatty acids[J].Mol Neurobiol,2025,62(2):2480-2492.
[16] IKEDA T,NISHIDA A,YAMANO M,et al.Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic,immune,and neurological diseases[J].Pharmacol Ther,2022,239:108273.
[17] MARTIN-GALLAUSIAUX C,MARINELLI L,BLOTTIÈRE H M,et al.SCFA:mechanisms and functional importance in the gut[J].Proc Nutr Soc,2021,80(1):37-49.
[18] YAO Y,CAI X,FEI W,et al.The role of short-chain fatty acids in immunity,inflammation and metabolism[J].Crit Rev Food Sci Nutr,2022,62(1):1-12.
[19] BOETS E,GOMAND S V,DEROOVER L,et al.Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects:a stable isotope study[J].J Physiol,2017,595(2):541-555.
[20] ABDALKAREEM JASIM S,JADE CATALAN OPULENCIA M,ALEXIS RAMÍREZ-CORONEL A,et al.The emerging role of microbiota-derived short-chain fatty acids in immunometabolism[J].Int Immunopharmacol,2022,110:108983.
[21] XU Y,ZHU Y,LI X,et al.Dynamic balancing of intestinal short-chain fatty acids:the crucial role of bacterial metabolism[J].Trends Food Sci Technol,2020,100:118-130.
[22] AHMED H,LEYROLLE Q,KOISTINEN V,et al.Microbiota-derived metabolites as drivers of gut-brain communication[J].Gut Microbes,2022,14(1):2102878.
[23] HUANG Y,WANG Y F,MIAO J,et al.Short-chain fatty acids:important components of the gut-brain axis against AD[J].Biomed Pharmacother,2024,175:116601.
[24] THION M S,GINHOUX F,GAREL S.Microglia and early brain development:an intimate journey[J].Science,2018,362(6411):185-189.
[25] CRYAN J F,O'RIORDAN K J,COWAN C S M,et al.The microbiota-gut-brain axis[J].Physiol Rev,2019,99(4):1877-2013.
[26] WANG L,CHRISTOPHERSEN C T,SORICH M J,et al.Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder[J].Dig Dis Sci,2012,57(8):2096-2102.
[27] HO L,ONO K,TSUJI M,et al.Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer's disease-type beta-amyloid neuropathological mechanisms[J].Expert Rev Neurother,2018,18(1):83-90.
[28] SKONIECZNA-YDECKA K,GROCHANS E,MACIEJEWSKA D,et al.Faecal short chain fatty acids profile is changed in Polish depressive women[J].Nutrients,2018,10(12):1939.
[29] KELLY J R,MINUTO C,CRYAN J F,et al.Cross talk:the microbiota and neurodevelopmental disorders[J].Front Neurosci,2017,11:490.
[30] DINAN T G,CRYAN J F.The microbiome-gut-brain axis in health and disease[J].Gastroenterol Clin North Am,2017,46(1):77-89.
[31] LU X,XUE Z,QIAN Y,et al.Changes in intestinal microflora and its metabolites underlie the cognitive impairment in preterm rats[J].Front Cell Infect Microbiol,2022,12:945851.
[32] GARS A,RONCZKOWSKI N M,CHASSAING B,et al.First encounters:effects of the microbiota on neonatal brain development[J].Front Cell Neurosci,2021,15:682505.
[33] HSU C Y,KHACHATRYAN L G,YOUNIS N K,et al.Microbiota-derived short chain fatty acids in pediatric health and diseases:from gut development to neuroprotection[J].Front Microbiol,2024,15:1456793.
[34] BERRINGTON J E,STEWART C J,CUMMINGS S P,et al.The neonatal bowel microbiome in health and infection[J].Curr Opin Infect Dis,2014,27(3):236-243.
[35] WANG Y,KASPER L H.The role of microbiome in central nervous system disorders[J].Brain Behav Immun,2014,38:1-12.
[36] GAREAU M G.Cognitive function and the microbiome[J].Int Rev Neurobiol,2016,131:227-246.
[37] KIMURA I,MIYAMOTO J,OHUE-KITANO R,et al.Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice[J].Science,2020,367(6481):eaaw8429.
[38] WATKINS C,MURPHY K,YEN S,et al.Effects of therapeutic hypothermia on the gut microbiota and metabolome of infants suffering hypoxic-ischemic encephalopathy at birth[J].Int J Biochem Cell Biol,2017,93:110-118.
[39] DROBYSHEVSK Y A,SYNOWIEC S,GOUSSAKOV I,et al.Intestinal microbiota modulates neuroinflammatory response and brain injury after neonatal hypoxia-ischemia[J].Gut Microbes,2024,16(1):2333808.
[40] GONZALEZ-PEREZ G,HICKS A L,TEKIELI T M,et al.Maternal antibiotic treatment impacts development of the neonatal intestinal microbiome and antiviral immunity[J].J Immunol,2016,196(9):3768-3779.
[41] ROTHHAMMER V,QUINTANA F J.The aryl hydrocarbon receptor:an environmental sensor integrating immune responses in health and disease[J].Nat Rev Immunol,2019,19(3):184-197.
[42] ERNY D,HRAB?DE ANGELIS A L,JAITIN D,et al.Host microbiota constantly control maturation and function of microglia in the CNS[J].Nat Neurosci,2015,18(7):965-977.
[43] BROWN A J,GOLDSWORTHY S M,BARNES A A,et al.The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids[J].J Biol Chem,2003,278(13):11312-11319.
[44] SCHÖNHERR-HELLEC S,AIRES J.Clostridia and necrotizing enterocolitis in preterm neonates[J].Anaerobe,2019,58:6-12.
[45] FELLOWS R,DENIZOT J,STELLATO C,et al.Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases[J].Nat Commun,2018,9(1):105.
[46] LI J M,YU R,ZHANG L P,et al.Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation:a benefit of short-chain fatty acids[J].Microbiome,2019,7(1):98.
[47] BERCIK P,PARK A J,SINCLAIR D,et al.The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication[J].Neurogastroenterol Motil,2011,23(12):1132-1139.
[48] GOEHLER L E,GAYKEMA R P A,OPITZ N,et al.Activation in vagal afferents and central autonomic pathways:early responses to intestinal infection with Campylobacter jejuni[J].Brain Behav Immun,2005,19(4):334-344.
[49] WANG X,WANG B R,ZHANG X J,et al.Evidences for vagus nerve in maintenance of immune balance and transmission of immune information from gut to brain in STM-infected rats[J].World J Gastroenterol,2002,8(3):540-545.
[50] KIMURA I,INOUE D,MAEDA T,et al.Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41(GPR41)[J].Proc Natl Acad Sci USA,2011,108(19):8030-8035.
[51] ZIABSKA K,GEWARTOWSKA M,FRONTCZAK-BANIEWICZ M,et al.The impact of the histone deacetylase inhibitor-sodium butyrate on complement-mediated synapse loss in a rat model of neonatal hypoxia-ischemia[J].Mol Neurobiol,2025,62(4):5216-5233.
[52] ZHANG Q,LI H,YIN S,et al.Changes in short-chain fatty acids affect brain development in mice with early life antibiotic-induced dysbacteriosis[J].Transl Pediatr,2024,13(8):1312-1326.
[53] TAO W,ZHANG Y,WANG B,et al.Advances in molecular mechanisms and therapeutic strategies for central nervous system diseases based on gut microbiota imbalance[J].J Adv Res,2024:S2090-1232(24)00124-3.
[54] HE X,ZHANG T,ZENG Y,et al.Sodium butyrate mediates histone crotonylation and alleviated neonatal rats hypoxic-ischemic brain injury through gut-brain axis[J].Front Microbiol,2022,13:993146.
[55] ZHOU Z,XU N,MATEI N,et al.Sodium butyrate attenuated neuronal apoptosis via GPR41/Gβγ/PI3K/Akt pathway after MCAO in rats[J].J Cereb Blood Flow Metab,2021,41(2):267-281.
[56] JAWORSKA J,ZIEMKA-NALECZ M,SYPECKA J,et al.The potential neuroprotective role of a histone deacetylase inhibitor,sodium butyrate,after neonatal hypoxia-ischemia[J].J Neuroinflammation,2017,14(1):34.
[57] HARIJAN A K,KALAIARASAN R,GHOSH A K,et al.The neuroprotective effect of short-chain fatty acids against hypoxia-reperfusion injury[J].Mol Cell Neurosci,2024,131:103972.
[58] MOIANU A,狤RBAN G,ANDONE S.The role of short-chain fatty acids in microbiota-gut-brain cross-talk with a focus on amyotrophic lateral sclerosis:a systematic review[J].Int J Mol Sci,2023,24(20):15094.
[59] TOPPING D L,CLIFTON P M.Short-chain fatty acids and human colonic function:roles of resistant starch and nonstarch polysaccharides[J].Physiol Rev,2001,81(3):1031-1064.
[60] WELTENS N,IVEN J,VAN OUDENHOVE L,et al.The gut-brain axis in health neuroscience:implications for functional gastrointestinal disorders and appetite regulation[J].Ann N Y Acad Sci,2018,1428(1):129-150.
[61] DETKA J,GMBIK K.Insights into a possible role of glucagon-like peptide-1 receptor agonists in the treatment of depression[J].Pharmacol Rep,2021,73(4):1020-1032.
[62] SUN J,LING Z,WANG F,et al.Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis[J].Neurosci Lett,2016,613:30-35.
[63] ZALEWSKA T,JAWORSKA J,SYPECKA J,et al.Impact of a histone deacetylase inhibitor-trichostatin a on neurogenesis after hypoxia-ischemia in immature rats[J].Int J Mol Sci,2020,21(11):3808.
[64] LIU X,LI X,XIA B,et al.High-fiber diet mitigates maternal obesity-induced cognitive and social dysfunction in the offspring via gut-brain axis[J].Cell Metab,2021,33(5):923-938.e6. |