网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
基于Padua评估量表构建老年急性缺血性卒中偏瘫患者并发下肢深静脉血栓的预测模型及其验证
作者:蒋玲1  付小凤2  李香娥3  范培玥1  韩高琪1  李惠玲4 
单位:1. 苏州市中西医结合医院 脑病科, 江苏 苏州 215101;
2. 苏州市九龙医院 急诊科, 江苏 苏州 215021;
3. 苏州市中西医结合医院 护理部, 江苏 苏州 215101;
4. 苏州大学 护理学院, 江苏 苏州 215031
关键词:Padua评估量表  老年  急性缺血性卒中  偏瘫  下肢深静脉血栓 
分类号:R364
出版年·卷·期(页码):2025·53·第五期(743-749)
摘要:

目的: 基于Padua评估量表(PPS)构建老年急性缺血性卒中(AIS)偏瘫患者并发下肢深静脉血栓(DVT)的预测模型,并验证其应用价值。方法: 收集2020年1月至2023年12月就诊于苏州市中西医结合医院的老年AIS偏瘫患者220例的临床资料,按照8∶2比例分为训练集(176例)、验证集(44例),训练集依据患者是否出现DVT分为DVT组、无DVT组,依据PPS指标进行单因素、多因素Logistic回归,并利用R软件构建列线图风险预测模型,结合验证集数据绘制受试者工作特征曲线、校准曲线、决策曲线。结果: 训练集中并发DVT者48例,DVT发生率为27.27%。单因素分析发现,DVT组卧床时间>3 d、既往DVT史、伴有易栓症、心力衰竭/呼吸衰竭、急性感染/风湿性疾病、完全偏瘫、意识障碍及昏迷、应用脱水药物占比均高于无DVT组,差异有统计学意义(P<0.05);而性别、年龄、体质指数(BMI)、激素治疗史在两组间比较,差异无统计学意义(P>0.05)。将偏瘫程度、应用脱水药物、意识状态、卧床时间、心力衰竭/呼吸衰竭结果代入R软件构建列线图,训练集中并发DVT患者的AUC为0.96(0.93~0.99),准确度为0.91(0.86~0.95),灵敏度为0.89(0.84~0.94),特异度为0.96(0.90~0.99),截断值为0.321。训练集、验证集并发DVT的列线图的校准曲线斜率为0.999、0.678,接近1,且拟合优度检验结果显示,预测概率与实际概率比较,差异无统计学意义(χ2=4.767,P=0.782)。当高风险阈值>0.10时,并发DVT风险者能够利用该预测模型更好地实现临床获益。结论: 基于PPS构建的老年AIS偏瘫患者并发DVT的预测模型具有较高的临床应用价值,可为临床DVT评估及防控提供参考。

Objective: To construct a prediction model based on the Padua Prediction Scale(PPS) for elderly hemiplegic patients with acute ischaemic stroke(AIS) complicated by lower limb deep vein thrombosis(DVT) and to verify its applicability. Methods: Clinical data from 220 elderly AIS hemiplegic patients who visited the Suzhou Integrated Traditional Chinese and Western Medicine Hospital from Jan 2020 to Dec 2023 were collected. The data was divided into a training set(176 cases) and a validation set(44 cases) in an 8∶2 ratio. The training set was further divided into DVT group and non-DVT group based on whether patients developed lower limb DVT. Univariate and multivariate Logistic regressions were performed using the PPS indicators, and a column-line graph risk prediction model was constructed using R software. Receiver operating characteristic(ROC) curve, calibration curve, and decision curves were evaluated using data from the validation set. Results: A total of 176 elderly AIS hemiplegic patients among which 48 cases complicated by lower limb DVT were included in the training set, and the incidence of DVT was 27.27%. Univariate analysis showed that the proportion of bed rest time>3 d, history of DVT, concomitant thrombophilic disease, cardiac or respiratory failure, acute infectious/rheumatic disease,complete hemiplegia,conscious disturbance and coma, and use of dehydrating drugs in DVT group were higher than those in non-DVT group, and the difference was statistically significant(P<0.05). Gender, age, body mass index(BMI) and history of hormone therapy were not statistically significant in the comparison between the two groups(P>0.05). The degree of hemiparesis, use of dehydration drugs, level of consciousness, bed rest time, and cardiac or respiratory failure were entered into R software to construct a column-line graph, in which the AUC of the training set of elderly hemiplegic patients with AIS complicated by DVT was 0.96(0.93-0.99), the accuracy was 0.91(0.86-0.95), the sensitivity was 0.89(0.84-0.94) and the specificity was 0.96(0.90-0.99), and the cut-off value was 0.321. The slopes of the calibration curves of the column plots of the training set and validation set concurrent DVT were 0.999 and 0.678, which were close to 1. The results of the goodness-of-fit test showed that the difference between the predicted probability and the actual probability was not statistically significant when comparing the predicted probability and the actual probability(χ2=4.767,P=0.782). When the high-risk threshold was>0.10, those at risk of concomitant DVT could use this prediction model to better achieve clinical benefit. Conclusion: The prediction model of complicated by lower limb DVT in elderly hemiplegic patients with AIS constructed based on PPS has high clinical application value and can provide reference for clinical DVT evaluation and prevention and control.

参考文献:

[1] 《中国脑卒中防治报告》编写组,王陇德.《中国脑卒中防治报告2021》概要[J].中国脑血管病杂志,2023,20(11):783-793.
[2] MA Q,LI R,WANG L,et al. Temporal trend and attributable risk factors of stroke burden in China,1990-2019:an analysis for the Global Burden of Disease Study 2019[J].Lancet Public Health,2021,6(12):e897-e906.
[3] 陆秋芳,应燕萍,覃艳勤,等.急性期脑卒中患者下肢深静脉血栓风险预测模型的构建及应用[J].中华护理杂志,2022,57(16):1948-1955.
[4] 熊银环,马莎莎,陈晓琳,等.Caprini风险评估量表和Padua量表在ICU非手术病人深静脉血栓形成中的预测价值[J].护理研究,2019,33(20):3484-3487.
[5] 李巍,王莉莉.Padua血栓评估模型对脑卒中患者静脉血栓栓塞症的评估价值[J].中国现代神经疾病杂志,2020,20(8):727-732.
[6] 中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组.中国急性缺血性脑卒中诊治指南2018[J].中华神经科杂志,2018,51(9):666-682.
[7] 牛芯蕊,金昱彤,郑倩倩,等.老年脑卒中患者发生下肢深静脉血栓危险因素的meta分析[J].现代预防医学,2021,48(22):4041-4046.
[8] 中华医学会外科学分会血管外科学组.深静脉血栓形成的诊断和治疗指南(第三版)[J].中华普通外科杂志,2017,32(9):807-812.
[9] 梁秋染.利用彩色多普勒超声对1093例下肢深静脉血栓病例的流行因素分析[J].现代医学,2020,48(2):249-252.
[10] 刘云,范晓先,黄静.下肢深静脉血栓病人急性期卧床休息体位治疗研究进展[J].护理研究,2021,35(15):2746-2748.
[11] 江文利.结缔组织病相关间质性肺疾病并发VTE患者的临床特征及危险因素[D].长春:吉林大学,2024.
[12] 崔强,张旭,王晓艳,等.不同患肢下肢深静脉血栓患者临床特征及转归分析[J].现代生物医学进展,2024,24(20):3944-3946,3960.
[13] 刘雪莲,牟丽娜,马莎莎,等.N末端B型钠尿肽前体和脂蛋白(a)水平及凝血功能预测慢性心力衰竭并发深静脉血栓作用[J].中华老年心脑血管病杂志,2024,26(6):642-646.
[14] 张鹏,滕飞飞,王泽芬,等.重症颅脑损伤老年患者围手术期深静脉血栓形成的风险预测模型构建[J].中国急救复苏与灾害医学杂志,2024,19(10):1353-1356,1395.
[15] 苏斌斌,吕丽娜.Autar量表指导下的早期护理对脑梗死后昏迷患者下肢深静脉血栓风险的影响[J].河南医学研究,2021,30(27):5160-5162.
[16] 李之恒,黄鑫涛.急性缺血性脑卒中患者深静脉血栓形成的危险因素及预测模型构建[J].河南医学研究,2024,33(3):488-492.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 914392 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626

苏ICP备09058541