网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
白癜风发病机制与治疗靶点的研究进展
作者:罗文鲜1  于均峰2 
单位:1. 川北医学院 临床医学院, 四川 南充 637000;
2. 成都市第五人民医院 皮肤科, 四川 成都 610000
关键词:白癜风|氧化应激|自身免疫|信号通路|治疗靶点|综述 
分类号:R758.41
出版年·卷·期(页码):2025·53·第四期(687-694)
摘要:

白癜风是一种以皮肤色素脱失为主要表现的慢性自身免疫性疾病。本文作者综述了其发病机制,重点关注了氧化应激、自身免疫以及关键信号通路间的相互作用。同时,对调控白癜风发生发展的关键信号通路进行深入解析,包括Janus激酶(JAK)/信号转导和转录激活因子(STAT)通路、Kelch样环氧氯丙烷相关蛋白1(Keap1)/核转录因子E2相关因子2(Nrf2)/抗氧化反应元件(ARE)通路、丝裂原活化蛋白激酶(MAPK)通路、磷脂酰肌醇-3-激酶/丝苏氨酸蛋白激酶(PI3K/Akt)通路等,分析了这些通路在氧化应激和自身免疫反应中的作用机制,以及在白癜风中的异常调控模式。基于这些通路,进一步总结目前已有的各种治疗策略,评估现有治疗方法的疗效、安全性及局限性,并展望了未来白癜风治疗的潜在方向,希望能为白癜风的基础研究和临床治疗提供新的参考和思路。

参考文献:

[1] HOMAN M W L,SPULS P I,KORTE J D,et al.The burden of vitiligo:patient characteristics associated with quality of life[J].J Am Acad Dermatol,2009,61(3):411-420.
[2] SALZES C,ABADIE S,SENESCHAL J,et al.The Vitiligo Impact Patient Scale(VIPs):development and validation of a vitiligo burden assessment tool[J].J Invest Dermatol,2016,136(1):52-58.
[3] IWANOWSKI T,SZLZAK P,ZABOTNA M,et al.Translation,cross-cultural adaptation and validation of the vitiligo-specific health-related quality of life instrument(VitiQoL) into Polish[J].Postepy Dermatol Alergol,2021,38(4):636-643.
[4] HUO S X,LIU X M,GE C H,et al.The effects of galangin on a mouse model of vitiligo induced by hydroquinone[J].Phytother Res,2014,28(10):1533-1538.
[5] GRIMES P E,NASHAWATI R.Depigmentation therapies for vitiligo[J].Dermatol Clin,2017,35(2):219-227.
[6] RASHIGHI M,AGARWAL P,RICHMOND J M,et al.CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo[J].Sci Transl Med,2014,6(223):223ra223.
[7] YANG L,WEI Y,SUN Y,et al.Interferon-gamma inhibits melanogenesis and induces apoptosis in melanocytes:a pivotal role of CD8+cytotoxic T lymphocytes in vitiligo[J].Acta Derm Venereol,2015,95(6):664-670.
[8] JACKSON S W,JACOBS H M,ARKATKAR T,et al.B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6[J].J Exp Med,2016,213(5):733-750.
[9] GHOLIJANI N,YAZDANI M R and DASTGHEIB L.Predominant role of innate pro-inflammatory cytokines in vitiligo disease[J].Arch Dermatol Res,2020,312(2):123-131.
[10] ZHANG J,HU W,WANG P,et al.Research progress on targeted antioxidant therapy and vitiligo[J].Oxid Med Cell Longev,2022,2022:1821780.
[11] IWANOWSKI T,KOKOWSKI K,NOWICKI R J,et al.Etiopathogenesis and emerging methods for treatment of vitiligo[J].Int J Mol Sci,2023,24(11):9749.
[12] CHEN J,LI S,LI C.Mechanisms of melanocyte death in vitiligo[J].Med Res Rev.2021,41(2):1138-1166.
[13] XIE H,ZHOU F,LIU L,et al.Vitiligo:how do oxidative stress-induced autoantigens trigger autoimmunity?[J].J Dermatol Sci,2016,81(1):3-9.
[14] KOCA R,ARMUTCU F,ALTINYAZAR H C,et al.Oxidant-antioxidant enzymes and lipid peroxidation in generalized vitiligo[J].Clin Exp Dermatol,2004,29(4):406-409.
[15] SASTRY K S,NAEEM H,MOKRAB Y,et al.RNA-seq reveals dysregulation of novel melanocyte genes upon oxidative stress:implications in vitiligo pathogenesis[J].Oxid Med Cell Longev,2019,2019:2841814.
[16] WANG Y,LI S,LI C.Perspectives of new advances in the pathogenesis of vitiligo:from oxidative stress to autoimmunity[J].Med Sci Monit,2019,25:1017-1023.
[17] VAN D B,JASPER G,KONIJNENBERG D,DELLEMIJN T A M,et al.Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients[J].J Invest Dermatol,2009,129(9):2220-2232.
[18] WU J,ZHOU M,WAN Y,et al.CD8+T cells from vitiligo perilesional margins induce autologous melanocyte apoptosis[J].Mol Med Rep,2013,7(1):237-241.
[19] JACQUEMIN C,MARTINS C,LUCCHESE F,et al.NKG2D defines a subset of skin effector memory CD8 T cells with proinflammatory functions in vitiligo[J].J Invest Dermatol,2020,140(6):1143-1153.
[20] CULLEN S P and MARTIN S J.Mechanisms of granule-dependent killing[J].Cell Death Differ,2008,15(2):251-262.
[21] AHMED M B,ZARAA I,REKIK R,et al.Functional defects of peripheral regulatory T lymphocytes in patients with progressive vitiligo[J].Pigment Cell Melanoma Res,2011,25(1):99-109.
[22] LIU H,WANG Y,LE Q,et al.The IFN-γ-CXCL9/CXCL10-CXCR3 axis in vitiligo:pathlogical mechanism and treatment[J].Eur J Immunol,2024,54(4):e2250281.
[23] SENGUPTA R,ROY M,DEY N S,et al.Immune dysregulation and inflammation causing hypopigmentation in post kala-azar dermal leishmaniasis:partners in crime?[J].Trends Parasitol,2023,39(10):822-836.
[24] DEMIRCI YILDIRIM T,KAHRAMAN A,KöKEN AVŞAR A,et al.Quantitative analysis of JAK/STAT signaling pathway in patients of inflammatory skin disorders[J].Rheumatol Int,2024,44(12):3009-3015.
[25] PLATANIAS L C.Mechanisms of type-Ⅰ- and type-Ⅱ-interferon-mediated signalling[J].Nat Rev Immunol,2005,5(5):375-386.
[26] SARDANA K,MUDDEBIHAL A,KHURANA A.JAK inhibitors in vitiligo:what they hit and what they miss-an immunopathogenesis based exposition of existing evidence[J].Expert Rev Clin Pharmacol,2023,16(12):1221-1227.
[27] XIE B,ZHU Y,SHEN Y,et al.Treatment update for vitiligo based on autoimmune inhibition and melanocyte protection[J].Expert Opin Ther Targets,2023,27(3):189-206.
[28] HAYES J D,MCMAHON M.Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention[J].Cancer Lett,2001,174(2):103-113.
[29] MARROT L,JONES C,PEREZ P,et al.The significance of Nrf2 pathway in(photo)-oxidative stress response in melanocytes and keratinocytes of the human epidermis[J].Pigment Cell Melanoma Res,2008,21(1):79-88.
[30] JIAN Z,LI K,SONG P,et al.Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response:a possible mechanism for melanocyte degeneration in vitiligo[J].J Invest Dermatol,2014,134(8):2221-2230.
[31] TANG H,YANG L,WU L,et al.Kaempferol,the melanogenic component of Sanguisorba officinalis,enhances dendricity and melanosome maturation/transport in melanocytes[J].J Pharmacol Sci,2021,147(4):348-357.
[32] AHN J,CHUNG Y W,PARK J B,et al.ω-hydroxyundec-9-enoic acid induces apoptosis by ROS mediated JNK and p38 phosphorylation in breast cancer cell lines[J].J Cell Biochem,2018,119(1):998-1007.
[33] HOU X,SHI J,SUN L,et al.The involvement of ERK1/2 and p38 MAPK in the premature senescence of melanocytes induced by H2O2 through a p53-independent p21 pathway[J].J Dermatol Sci,2022,105(2):88-97.
[34] PICARDO M,DELL'ANNA M L,EZZEDINE K,et al.Vitiligo[J].Nat Rev Dis Primers,2015,341(1):15011.
[35] RODRIGUES M,EZZEDINE K,HAMZAVI I,et al.New discoveries in the pathogenesis and classification of vitiligo[J].J Am Acad Dermatol,2017,77(1):1-13.
[36] YOON J H,YOUN K,JUN M.Protective effect of sargahydroquinoic acid against Aβ25-35-evoked damage via PI3K/Akt mediated Nrf2 antioxidant defense system[J].Biomed Pharmacother,2021,144:112271.
[37] XIONG J,YANG J,YAN K,et al.Ginsenoside Rk1 protects human melanocytes from H2O2-induced oxidative injury via regulation of the PI3K/AKT/Nrf2/HO-1 pathway[J].Mol Med Rep,2021,24(5):821.
[38] REGAZZETTI C,JOLY F,MARTY C,et al.Transcriptional analysis of vitiligo skin reveals the alteration of Wnt pathway:a Promising target for repigmenting vitiligo patients[J].J Invest Dermatol,2015,135(12):3105-3114.
[39] ZHAO S J,JIA H,XU X L,et al.Identification of the role of Wnt/β-catenin pathway through integrated analyses and in vivo experiments in vitiligo[J].Clin Cosmet Investig Dermatol,2021,14:1089-1103.
[40] CUI W,ZHANG Z,ZHANG P,et al.Nrf2 attenuates inflammatory response in COPD/emphysema:crosstalk with Wnt3a/β-catenin and AMPK pathways[J].J Cell Mol Med,2018,22(7):3514-3525.
[41] DANILO M,CHENNUPATI V,SILVA J G,et al.Suppression of Tcf1 by inflammatory cytokines facilitates effector CD8T cell differentiation[J].Cell Reports,2018,22(8):2107-2117.
[42] DING Y,SHEN S,LINO A C,et al.Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells[J].Nat Med,2008,14(2):162-169.
[43] GRAHAM J A,FRAY M,DE HASETH S,et al.Suppressive regulatory T cell activity is potentiated by glycogen synthase kinase 3β inhibition[J].J Biol Chem,2010,285(43):32852-32859.
[44] LIN X,MENG X,LIN J.The possible role of Wnt/β-catenin signalling in vitiligo treatment[J].J Eur Acad Dermatol,2023,37(11):2208-2221.
[45] RABBANI P,TAKEO M,CHOU W,et al.Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration[J].Cell,2011,145(6):941-955.
[46] TAKEO M,LEE W,RABBANI P,et al.EdnrB governs regenerative response of melanocyte stem cells by crosstalk with Wnt Signaling[J].Cell Rep,2016,15(6):1291-1302.
[47] MEI X,WU Z,HUANG J,et al.Screening and analysis of differentially expressed genes of human melanocytes in skin cells mixed culture[J].Am J Transl Res,2019,11(5):2657-2667.
[48] LI B,YI X,ZHUANG T,et al.RIP1-mediated necroptosis facilitates oxidative stress-induced melanocyte death,offering insight into vitiligo[J].J Invest Dermatol,2021,141(12):2921-2931.
[49] GRISHANOVA A Y,PEREPECHAEVA M L.Aryl hydrocarbon receptor in oxidative stress as a double agent and its biological and therapeutic significance[J].Int J Mol Sci,2022,23(12):6719.
[50] TAN Y Q,WANG Y N,FENG H Y,et al.Host/microbiota interactions-derived tryptophan metabolites modulate oxidative stress and inflammation via aryl hydrocarbon receptor signaling[J].Free Radic Biol Med,2022,184:30-41.
[51] LI Y,ZENG Y,CHEN Z,et al.The role of aryl hydrocarbon receptor in vitiligo:a review[J].Front Immunol,2024,15:1291556.
[52] WANG X,LI S,LIU L,et al.Role of the aryl hydrocarbon receptor signaling pathway in promoting mitochondrial biogenesis against oxidative damage in human melanocytes[J].J Dermatol Sci,2019,96(1):33-41.
[53] MIOT H A,CRIADO P R,DE CASTRO C C S,et al.JAK-STAT pathway inhibitors in dermatology[J].An Bras Dermatol,2023,98(5):656-677.
[54] CUNNINGHAM K N,ROSMARIN D.Vitiligo treatments:review of current therapeutic modalities and JAK inhibitors[J].Am J Clin Dermatol,2023,24(2):165-186.
[55] KARAGAIAH P,SCHWARTZ R A,LOTTI T,et al.Biologic and targeted therapeutics in vitiligo[J].J Cosmet Dermatol,2023,22(1):64-73.
[56] PHAN K,PHAN S,SHUMACK S,et al.Repigmentation in vitiligo using janus kinase(JAK) inhibitors with phototherapy:systematic review and Meta-analysis[J].J Dermatolog Treat,2022,33(1):173-177.
[57] ZHOU S,LEI L,JIANG L,et al.Adverse event of ruxolitinib cream:a real-world analysis based on FDA Adverse Event Reporting System from 2021 to 2024[J].Expert Opin Drug Saf,2024:1-6.
[58] HUANG F,HU D,FAN H,et al.Efficacy and safety of janus kinase inhibitors in patients with vitiligo:a systematic review and Meta-analysis[J].Clin Pharmacol Ther,2024,117(3):659-669.
[59] ZHANG S,YI X,SU X,et al.Ginkgo biloba extract protects human melanocytes from H2O2 -induced oxidative stress by activating Nrf2[J].J Cell Mol Med,2019,23(8):5193-5199.
[60] PARSAD D,PANDHI R and JUNEJA A.Effectiveness of oral ginkgo biloba in treating limited,slowly spreading vitiligo[J].Clin Exp Dermatol,2003,28(3):285-287.
[61] XIN L,GAO J,LIN H,et al.Regulatory mechanisms of baicalin in cardiovascular diseases:a review[J].Front Pharmacol,2020,11:583200.
[62] MA J,LI S,ZHU L,et al.Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2(Nrf2) signaling pathway[J].Free Radical Bio Med,2018,129:492-503.
[63] ZHU Y,ZHONG L,PENG J,et al.The Therapeutic Effects of Baicalin on Vitiligo Mice[J].Biol Pharm Bull,2019,42(9):1450-1455.
[64] ZHANG S,ZDRAVKOVI T P,WANG T,et al.Efficacy and safety of oral simvastatin in the treatment of patients with vitiligo[J].J Invest Med,2021,69(2):393-396.
[65] HABEOS I G,ZIROS P G,CHARTOUMPEKIS D,et al.Simvastatin activates Keap1/Nrf2 signaling in rat liver[J].J Mol Med,2008,86(11):1279-1285.
[66] CHARTOUMPEKIS D,ZIROS P G,PSYROGIANNIS A,et al.Simvastatin lowers reactive oxygen species level by Nrf2 acti-vation via PI3K/Akt pathway[J].Biochem Bioph Res Co,2010,396(2):463-466.
[67] CHANG Y,LI S,GUO W,et al.Simvastatin protects human melanocytes from H2O2-induced oxidative stress by activating Nrf2[J].J Invest Dermatol,2017,137(6):1286-1296.
[68] AGARWAL P,RASHIGHI M,ESSIEN K I,et al.Simvastatin prevents and reverses depigmentation in a mouse model of vitiligo[J].J Invest Dermatol,2015,135(4):1080-1088.
[69] MINDER E I,BARMAN-AKSOEZEN J,SCHNEIDER-YIN X.Pharmacokinetics and pharmacodynamics of Afamelanotide and its clinical use in treating dermatologic disorders[J].Clin Pharmacokinet,2017,56(8):815-823.
[70] LIM H W,GRIMES P E,AGBAI O,et al.Afamelanotide and narrowband UV-B phototherapy for the treatment of vitiligo:a randomized multicenter trial[J].Jama Dermatol,2015,151(1):42-50.
[71] ROK J,RZEPKA Z,MASZCZYK M,et al.Minocycline impact on redox homeostasis of normal human melanocytes HEMn-LP exposed to UVA radiation and hydrogen peroxide[J].Int J Mol Sci,2021,22(4):1642.
[72] SUN Y,GUAN X,WANG H,et al.Randomized clinical trial of combined therapy with oral α-lipoic acid and NB-UVB for nonsegmental stable vitiligo[J].Dermatol Ther,2021,34(1):e14610.
[73] ZAID A N,AL RAMAHI R.Depigmentation and anti-aging treatment by natural molecules[J].Curr Pharm Design,2019,25(20):2292-2312.
[74] ZHAI S,XU M,LI Q,et al.Successful treatment of vitiligo with cold atmospheric plasma-activated hydrogel[J].J Invest Dermatol,2021,141(11):2710-2719.e2716.
[75] NIE X Q,LI Y H,ZHOU T,et al.Effect of An atmospheric plasma jet on the differentiation of melanoblast progenitor[J].Curr Med Sci,2022,42(3):629-634.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 933591 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626

苏ICP备09058541