[1] ILHAN G,KARAKUS S,ANDIC N.Risk factors and primary prevention of acute leukemia[J].Asian Pac J Cancer Prev,2006,7(4):515-517.
[2] HUANG T,LEUNG B,HUANG Y,et al.A murine model to evaluate immunotherapy effectiveness for human Fanconi anemia-mutated acute myeloid leukemia[J].PLoS one,2024,19(1):e0292375.
[3] STUPAKOVA Z,DIAGIL I,MELNYK U,et al.Primary hemostasis dysfunctions and bleeding risk in newly diagnosed acute myeloid leukemia[J].J Cancer Res Clin Oncol,2023,149(11):8167-8176.
[4] IMATAKI O,ISHIDA T,KIDA J I,et al.Repeated spontaneous remission of acute myeloid leukemia in response to various infections:a case report[J].BMC Infect Dis,2023,23(1):215.
[5] CARTER J L,HEGE K,YANG J,et al.Targeting multiple signaling pathways:the new approach to acute myeloid leukemia therapy[J].Signal Transduc Target Ther,2020,5(1):288.
[6] ESTEY E.Acute myeloid leukemia and myelodysplastic syndromes in older patients[J].J Clin Oncol,2007,25(14):1908-1915.
[7] ORAN B,WEISDORF D J.Survival for older patients with acute myeloid leukemia:a population-based study[J].Haematologica,2012,97(12):1916-1924.
[8] SIEGEL R,NAISHADHAM D,JEMAL A.Cancer statistics,2013[J].CA Cancer J Clin,2013,63(1):11-30.
[9] CHRETIEN A S,DEVILLIER R,GRANJEAUD S,et al.High-dimensional mass cytometry analysis of NK cell alterations in AML identifies a subgroup with adverse clinical outcome[J].Proc Natl Acad Sci U S A,2021,118(22):e2020459118.
[10] CHRISTOPHER M J,PETTI A A,RETTIG M P,et al.Immune escape of relapsed AML cells after allogeneic transplantation[J].N Engl J Med,2018,379(24):2330-2341.
[11] TETTAMANTI S,PIEVANI A,BIONDI A,et al.Catch me if you can:how AML and its niche escape immunotherapy[J].Leukemia,2022,36(1):13-22.
[12] VAGO L,GOJO I.Immune escape and immunotherapy of acute myeloid leukemia[J].J Clin Invest,2020,130(4):1552-1564.
[13] SALIK B,SMYTH M J,NAKAMURA K.Targeting immune checkpoints in hematological malignancies[J].J Hematol Oncol,2020,13(1):111.
[14] TANG L,WU J,LI C G,et al.Characterization of immune dysfunction and identification of prognostic immune-related risk factors in acute myeloid leukemia[J].Clin Cancer Res,2020,26(7):1763-1772.
[15] LV Y,WANG H,LIU Z.The role of regulatory B cells in patients with acute myeloid leukemia[J].Med Sci Monit,2019,25:3026-3031.
[16] LE DIEU R,TAUSSIG D C,RAMSAY A G,et al.Peripheral blood T cells in acute myeloid leukemia(AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts[J].Blood,2009,114(18):3909-3916.
[17] KLAUER L K,SCHUTTI O,UGUR S,et al.Interferon gamma secretion of adaptive and innate immune cells as a parameter to describe leukaemia-derived dendritic-cell-mediated immune responses in acute myeloid leukaemia in vitro[J].Transfus Med Hemother,2022,49(1):44-61.
[18] MOORE J A,MISTRY J J,HELLMICH C,et al.LC3-associated phagocytosis in bone marrow macrophages suppresses acute myeloid leukemia progression through STING activation[J].J Clin Invest,2022,132(5):e153157.
[19] COSTELLO R T,SIVORI S,MARCENARO E,et al.Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia[J].Blood,2002,99(10):3661-3667.
[20] FAURIAT C,JUST-LANDI S,MALLET F,et al.Deficient expression of NCR in NK cells from acute myeloid leukemia:evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction[J].Blood,2007,109(1):323-330.
[21] ELIAS S,YAMIN R,GOLOMB L,et al.Immune evasion by oncogenic proteins of acute myeloid leukemia[J].Blood,2014,123(10):1535-1543.
[22] GAO C,LI X,XU Y,et al.Recent advances in CAR-T cell therapy for acute myeloid leukaemia[J].J Cell Mol Med,2024,28(9):e18369.
[23] HANSRIVIJIT P,GALE R P,BARRETT J,et al.Cellular therapy for acute myeloid Leukemia-Current status and future prospects[J].Blood Rev,2019,37:100578.
[24] DAVEY SMITH G,HEMANI G.Mendelian randomization:genetic anchors for causal inference in epidemiological studies[J].Hum Mol Genet,2014,23(R1):R89-R98.
[25] BURGESS S,BUTTERWORTH A,MALARSTIG A,et al.Use of Mendelian randomisation to assess potential benefit of clinical intervention[J].BMJ,2012,345:e7325.
[26] ORR V,STERI M,SIDORE C,et al.Complex genetic signatures in immune cells underlie autoimmunity and inform therapy[J].Nat Genet,2020,52(10):1036-1045.
[27] BURGESS S,FOLEY C N,ALLARA E,et al.A robust and efficient method for Mendelian randomization with hundreds of genetic variants[J].Nat Commun,2020,11(1):376.
[28] GU J,QIAO Y,CONG S.Causal role of immune cells on risk of Parkinson's disease:a Mendelian randomization study[J].Front Aging Neurosci,2024,16:1368374.
[29] WANG Y X,ZHOU C P,WANG D T,et al.Unraveling the causal role of immune cells in gastrointestinal tract cancers:insights from a Mendelian randomization study[J].Front Immunol,2024,15:1343512.
[30] PIERCE B L,AHSAN H,VANDERWEELE T J.Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants[J].Int J Epidemiol,2011,40(3):740-752.
[31] LIN S H,BROWN D W,MACHIELA M J.LDtrait:an online tool for identifying published phenotype associations in linkage disequilibrium[J].Cancer Res,2020,80(16):3443-3446.
[32] BURGESS S,BUTTERWORTH A,THOMPSON S G.Mendelian randomization analysis with multiple genetic variants using summarized data[J].Genet Epidemiol,2013,37(7):658-665.
[33] BOWDEN J,DAVEY SMITH G,HAYCOCK P C,et al.Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator[J].Genet Epidemiol,2016,40(4):304-314.
[34] MAURI C,MENON M.Human regulatory B cells in health and disease:therapeutic potential[J].J Clin Invest,2017,127(3):772-779.
[35] SARVARIA A,MADRIGAL J A,SAUDEMONT A.B cell regulation in cancer and anti-tumor immunity[J].Cell Mol Immunol,2017,14(8):662-674.
[36] MURAKAMI Y,SAITO H,SHIMIZU S,et al.Increased regulatory B cells are involved in immune evasion in patients with gastric cancer[J].Sci Rep,2019,9(1):13083.
[37] O'CONNOR B P,GLEESON M W,NOELLE R J,et al.The rise and fall of long-lived humoral immunity:terminal differentiation of plasma cells in health and disease[J].Immunol Rev,2003,194:61-76.
[38] VAN ZELM M C,VAN DER BURG M,VAN DONGEN J J.Homeostatic and maturation-associated proliferation in the peripheral B-cell compartment[J].Cell cycle,2007,6(23):2890-2895.
[39] LI S,WANG Z,GUO X,et al.Potent anti-tumor activity of CD45RA-targeting Hm3A4-Ranpirnase against myeloid lineage leukemias[J].Bioengineered,2022,13(4):8631-8642.
[40] CHAN W K,SUWANNASAEN D,THROM R E,et al.Chimeric antigen receptor-redirected CD45RA-negative T cells have potent antileukemia and pathogen memory response without graft-versus-host activity[J].Leukemia,2015,29(2):387-395.
[41] KINER E,WILLIE E,VIJAYKUMAR B,et al.Gut CD4+ T cell phenotypes are a continuum molded by microbes,not by T(H) archetypes[J].Nat Immunol,2021,22(2):216-228.
[42] BRÜCK O,DUFVA O,HOHTARI H,et al.Immune profiles in acute myeloid leukemia bone marrow associate with patient age,T-cell receptor clonality,and survival[J].Blood Adv,2020,4(2):274-286.
[43] ERSVAER E,LISETH K,SKAVLAND J,et al.Intensive chemotherapy for acute myeloid leukemia differentially affects circulating TC1,TH1,TH17 and TREG cells[J].BMC immunol,2010,11:38.
[44] KANAKRY C G,HESS A D,GOCKE C D,et al.Early lymphocyte recovery after intensive timed sequential chemotherapy for acute myelogenous leukemia:peripheral oligoclonal expansion of regulatory T cells[J].Blood,2011,117(2):608-617.
[45] SHENGHUI Z,YIXIANG H,JIANBO W,et al.Elevated frequencies of CD4+ CD25+ CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia[J].Int J Cancer,2011,129(6):1373-1381.
[46] SZCZEPANSKI M J,SZAJNIK M,CZYSTOWSKA M,et al.Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia[J].Clin Cancer Res,2009,15(10):3325-3332.
[47] WANG X,ZHENG J,LIU J,et al.Increased population of CD4(+)CD25(high),regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients[J].Eur J Haematol,2005,75(6):468-476.
[48] WANG Z,LIU T,LI Y,et al.Increased Th17 and Treg levels in peripheral blood positively correlate with minimal residual disease in acute myeloid leukaemia[J].Hematology,2024,29(1):2346971.
[49] TANAKA A,SAKAGUCHI S.Regulatory T cells in cancer immunotherapy[J].Cell Res,2017,27(1):109-118.
[50] LI J Y,DUAN X F,WANG L P,et al.Selective depletion of regulatory T cell subsets by docetaxel treatment in patients with nonsmall cell lung cancer[J].J Immunol Res,2014,2014:286170.
[51] LUO C T,LIAO W,DADI S,et al.Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity[J].Nature,2016,529(7587):532-536.
[52] GRANT F M,YANG J,NASRALLAH R,et al.BACH2 drives quiescence and maintenance of resting Treg cells to promote homeostasis and cancer immunosuppression[J].J Exp Med,2020,217(9):e20190711.
[53] LAMBLE A J,LIND E F.Targeting the immune microenvironment in acute myeloid leukemia:a focus on T cell immunity[J].Front Oncol,2018,8:213.
[54] GUO S,MOHAN G S,WANG B,et al.Paired single-B-cell transcriptomics and receptor sequencing reveal activation states and clonal signatures that characterize B cells in acute myeloid leukemia[J].J Immunother Cancer,2024,12(2):e008318.
[55] 杨红,李文星.基于孟德尔随机化探索免疫细胞与胰腺导管腺癌之间的关系[J].现代医学,2024,52(9):1330-1338.
[56] 赵雨恒,涂子滢,方醒艺,等.孟德尔随机化分析在多囊卵巢综合征病因研究中的应用[J].现代医学,2024,52(4):648-652. |