网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
免疫细胞与急性髓系白血病的因果关联:一项孟德尔随机化研究
作者:何红华  聂丽容  李庆华  钟济鸿  蔡娜莉 
单位:广东医科大学附属医院 血液内科, 广东 湛江 524002
关键词:免疫细胞 急性髓系白血病 单核苷酸多态性 孟德尔随机化分析 敏感性分析 
分类号:R552;R733.71
出版年·卷·期(页码):2025·53·第三期(371-381)
摘要:

目的: 采用孟德尔随机化(MR)分析免疫细胞与急性髓系白血病(AML)的因果效应。方法: 基于GWAS Catalogue数据库获取731种免疫细胞数据,FinnGen R10数据库中获取AML遗传数据,采用加权中位数估计(WME)和逆方差加权(IVW)法进行分析,通过Cochran Q检验、MR-PRESSO、MR-Egger和逐一排除等方法进行敏感性分析以评估其稳健性。通过反向MR分析阐明AML与免疫细胞的关系。结果: 5种免疫细胞被确定与AML的发生显著相关,在B细胞中,CD24+ CD27+ B细胞上的CD19表达水平被识别为AML的风险因素, 而幼稚-成熟B细胞占淋巴细胞的百分比则作为保护因素;在T细胞中,CD45RA-CD4+ T细胞绝对计数被识别为保护因素,而静息CD4调节性T细胞占CD4调节性T细胞的百分比和静息CD4调节性T细胞占CD4+ T细胞的百分比则被识别为风险因素。反向MR分析显示,AML与静息CD4调节性T细胞占CD4调节性T细胞的百分比之间存在正相关。结论: MR分析揭示了5种免疫细胞与AML之间的因果关系,为发展新型免疫疗法提供了新视角。

Objective: To investigating the causal effects of immune cells and acute myeloid leukemia(AML) through Mendelian randomization analysis. Methods: 731 types of immune cells were obtained from the GWAS Catalogue database and AML genetic data were obtained from the FinnGen R10 database. Weighted median estimation(WME) and inverse variance weighting(IVW) methods were used for analysis. The robustness of the obtained results was evaluated by sensitivity analysis using Cochran Q test, MR-PRESSO, MR-Egger and leave-one-out. Results: Five types of immune cells were identified to be significantly associated with the occurrence of AML. In B cells, CD19 on CD24+ CD27+ B cell was recognized as a risk factor for AML, percentage of naive-mature B cell in lymphocyte served as a protective factor. In T cells, CD45RA- CD4+ T cell absolute count was recognized as a protective factor, whereas percentage of resting CD4 regulatory T cell in CD4 regulatory T cell and the percentage of resting CD4 regulatory T cell in CD4+ T cell were recognized as risk factors. Reverse MR analysis revealed a positive correlation between AML and percentage of resting CD4 regulatory T cell in CD4 regulatory T cell. Conclusion: MR analysis reveals the causal relationship between five types of immune cells and AML, providing a new perspective for the development of new immunotherapies.

参考文献:

[1] ILHAN G,KARAKUS S,ANDIC N.Risk factors and primary prevention of acute leukemia[J].Asian Pac J Cancer Prev,2006,7(4):515-517.
[2] HUANG T,LEUNG B,HUANG Y,et al.A murine model to evaluate immunotherapy effectiveness for human Fanconi anemia-mutated acute myeloid leukemia[J].PLoS one,2024,19(1):e0292375.
[3] STUPAKOVA Z,DIAGIL I,MELNYK U,et al.Primary hemostasis dysfunctions and bleeding risk in newly diagnosed acute myeloid leukemia[J].J Cancer Res Clin Oncol,2023,149(11):8167-8176.
[4] IMATAKI O,ISHIDA T,KIDA J I,et al.Repeated spontaneous remission of acute myeloid leukemia in response to various infections:a case report[J].BMC Infect Dis,2023,23(1):215.
[5] CARTER J L,HEGE K,YANG J,et al.Targeting multiple signaling pathways:the new approach to acute myeloid leukemia therapy[J].Signal Transduc Target Ther,2020,5(1):288.
[6] ESTEY E.Acute myeloid leukemia and myelodysplastic syndromes in older patients[J].J Clin Oncol,2007,25(14):1908-1915.
[7] ORAN B,WEISDORF D J.Survival for older patients with acute myeloid leukemia:a population-based study[J].Haematologica,2012,97(12):1916-1924.
[8] SIEGEL R,NAISHADHAM D,JEMAL A.Cancer statistics,2013[J].CA Cancer J Clin,2013,63(1):11-30.
[9] CHRETIEN A S,DEVILLIER R,GRANJEAUD S,et al.High-dimensional mass cytometry analysis of NK cell alterations in AML identifies a subgroup with adverse clinical outcome[J].Proc Natl Acad Sci U S A,2021,118(22):e2020459118.
[10] CHRISTOPHER M J,PETTI A A,RETTIG M P,et al.Immune escape of relapsed AML cells after allogeneic transplantation[J].N Engl J Med,2018,379(24):2330-2341.
[11] TETTAMANTI S,PIEVANI A,BIONDI A,et al.Catch me if you can:how AML and its niche escape immunotherapy[J].Leukemia,2022,36(1):13-22.
[12] VAGO L,GOJO I.Immune escape and immunotherapy of acute myeloid leukemia[J].J Clin Invest,2020,130(4):1552-1564.
[13] SALIK B,SMYTH M J,NAKAMURA K.Targeting immune checkpoints in hematological malignancies[J].J Hematol Oncol,2020,13(1):111.
[14] TANG L,WU J,LI C G,et al.Characterization of immune dysfunction and identification of prognostic immune-related risk factors in acute myeloid leukemia[J].Clin Cancer Res,2020,26(7):1763-1772.
[15] LV Y,WANG H,LIU Z.The role of regulatory B cells in patients with acute myeloid leukemia[J].Med Sci Monit,2019,25:3026-3031.
[16] LE DIEU R,TAUSSIG D C,RAMSAY A G,et al.Peripheral blood T cells in acute myeloid leukemia(AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts[J].Blood,2009,114(18):3909-3916.
[17] KLAUER L K,SCHUTTI O,UGUR S,et al.Interferon gamma secretion of adaptive and innate immune cells as a parameter to describe leukaemia-derived dendritic-cell-mediated immune responses in acute myeloid leukaemia in vitro[J].Transfus Med Hemother,2022,49(1):44-61.
[18] MOORE J A,MISTRY J J,HELLMICH C,et al.LC3-associated phagocytosis in bone marrow macrophages suppresses acute myeloid leukemia progression through STING activation[J].J Clin Invest,2022,132(5):e153157.
[19] COSTELLO R T,SIVORI S,MARCENARO E,et al.Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia[J].Blood,2002,99(10):3661-3667.
[20] FAURIAT C,JUST-LANDI S,MALLET F,et al.Deficient expression of NCR in NK cells from acute myeloid leukemia:evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction[J].Blood,2007,109(1):323-330.
[21] ELIAS S,YAMIN R,GOLOMB L,et al.Immune evasion by oncogenic proteins of acute myeloid leukemia[J].Blood,2014,123(10):1535-1543.
[22] GAO C,LI X,XU Y,et al.Recent advances in CAR-T cell therapy for acute myeloid leukaemia[J].J Cell Mol Med,2024,28(9):e18369.
[23] HANSRIVIJIT P,GALE R P,BARRETT J,et al.Cellular therapy for acute myeloid Leukemia-Current status and future prospects[J].Blood Rev,2019,37:100578.
[24] DAVEY SMITH G,HEMANI G.Mendelian randomization:genetic anchors for causal inference in epidemiological studies[J].Hum Mol Genet,2014,23(R1):R89-R98.
[25] BURGESS S,BUTTERWORTH A,MALARSTIG A,et al.Use of Mendelian randomisation to assess potential benefit of clinical intervention[J].BMJ,2012,345:e7325.
[26] ORR V,STERI M,SIDORE C,et al.Complex genetic signatures in immune cells underlie autoimmunity and inform therapy[J].Nat Genet,2020,52(10):1036-1045.
[27] BURGESS S,FOLEY C N,ALLARA E,et al.A robust and efficient method for Mendelian randomization with hundreds of genetic variants[J].Nat Commun,2020,11(1):376.
[28] GU J,QIAO Y,CONG S.Causal role of immune cells on risk of Parkinson's disease:a Mendelian randomization study[J].Front Aging Neurosci,2024,16:1368374.
[29] WANG Y X,ZHOU C P,WANG D T,et al.Unraveling the causal role of immune cells in gastrointestinal tract cancers:insights from a Mendelian randomization study[J].Front Immunol,2024,15:1343512.
[30] PIERCE B L,AHSAN H,VANDERWEELE T J.Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants[J].Int J Epidemiol,2011,40(3):740-752.
[31] LIN S H,BROWN D W,MACHIELA M J.LDtrait:an online tool for identifying published phenotype associations in linkage disequilibrium[J].Cancer Res,2020,80(16):3443-3446.
[32] BURGESS S,BUTTERWORTH A,THOMPSON S G.Mendelian randomization analysis with multiple genetic variants using summarized data[J].Genet Epidemiol,2013,37(7):658-665.
[33] BOWDEN J,DAVEY SMITH G,HAYCOCK P C,et al.Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator[J].Genet Epidemiol,2016,40(4):304-314.
[34] MAURI C,MENON M.Human regulatory B cells in health and disease:therapeutic potential[J].J Clin Invest,2017,127(3):772-779.
[35] SARVARIA A,MADRIGAL J A,SAUDEMONT A.B cell regulation in cancer and anti-tumor immunity[J].Cell Mol Immunol,2017,14(8):662-674.
[36] MURAKAMI Y,SAITO H,SHIMIZU S,et al.Increased regulatory B cells are involved in immune evasion in patients with gastric cancer[J].Sci Rep,2019,9(1):13083.
[37] O'CONNOR B P,GLEESON M W,NOELLE R J,et al.The rise and fall of long-lived humoral immunity:terminal differentiation of plasma cells in health and disease[J].Immunol Rev,2003,194:61-76.
[38] VAN ZELM M C,VAN DER BURG M,VAN DONGEN J J.Homeostatic and maturation-associated proliferation in the peripheral B-cell compartment[J].Cell cycle,2007,6(23):2890-2895.
[39] LI S,WANG Z,GUO X,et al.Potent anti-tumor activity of CD45RA-targeting Hm3A4-Ranpirnase against myeloid lineage leukemias[J].Bioengineered,2022,13(4):8631-8642.
[40] CHAN W K,SUWANNASAEN D,THROM R E,et al.Chimeric antigen receptor-redirected CD45RA-negative T cells have potent antileukemia and pathogen memory response without graft-versus-host activity[J].Leukemia,2015,29(2):387-395.
[41] KINER E,WILLIE E,VIJAYKUMAR B,et al.Gut CD4+ T cell phenotypes are a continuum molded by microbes,not by T(H) archetypes[J].Nat Immunol,2021,22(2):216-228.
[42] BRÜCK O,DUFVA O,HOHTARI H,et al.Immune profiles in acute myeloid leukemia bone marrow associate with patient age,T-cell receptor clonality,and survival[J].Blood Adv,2020,4(2):274-286.
[43] ERSVAER E,LISETH K,SKAVLAND J,et al.Intensive chemotherapy for acute myeloid leukemia differentially affects circulating TC1,TH1,TH17 and TREG cells[J].BMC immunol,2010,11:38.
[44] KANAKRY C G,HESS A D,GOCKE C D,et al.Early lymphocyte recovery after intensive timed sequential chemotherapy for acute myelogenous leukemia:peripheral oligoclonal expansion of regulatory T cells[J].Blood,2011,117(2):608-617.
[45] SHENGHUI Z,YIXIANG H,JIANBO W,et al.Elevated frequencies of CD4+ CD25+ CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia[J].Int J Cancer,2011,129(6):1373-1381.
[46] SZCZEPANSKI M J,SZAJNIK M,CZYSTOWSKA M,et al.Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia[J].Clin Cancer Res,2009,15(10):3325-3332.
[47] WANG X,ZHENG J,LIU J,et al.Increased population of CD4(+)CD25(high),regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients[J].Eur J Haematol,2005,75(6):468-476.
[48] WANG Z,LIU T,LI Y,et al.Increased Th17 and Treg levels in peripheral blood positively correlate with minimal residual disease in acute myeloid leukaemia[J].Hematology,2024,29(1):2346971.
[49] TANAKA A,SAKAGUCHI S.Regulatory T cells in cancer immunotherapy[J].Cell Res,2017,27(1):109-118.
[50] LI J Y,DUAN X F,WANG L P,et al.Selective depletion of regulatory T cell subsets by docetaxel treatment in patients with nonsmall cell lung cancer[J].J Immunol Res,2014,2014:286170.
[51] LUO C T,LIAO W,DADI S,et al.Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity[J].Nature,2016,529(7587):532-536.
[52] GRANT F M,YANG J,NASRALLAH R,et al.BACH2 drives quiescence and maintenance of resting Treg cells to promote homeostasis and cancer immunosuppression[J].J Exp Med,2020,217(9):e20190711.
[53] LAMBLE A J,LIND E F.Targeting the immune microenvironment in acute myeloid leukemia:a focus on T cell immunity[J].Front Oncol,2018,8:213.
[54] GUO S,MOHAN G S,WANG B,et al.Paired single-B-cell transcriptomics and receptor sequencing reveal activation states and clonal signatures that characterize B cells in acute myeloid leukemia[J].J Immunother Cancer,2024,12(2):e008318.
[55] 杨红,李文星.基于孟德尔随机化探索免疫细胞与胰腺导管腺癌之间的关系[J].现代医学,2024,52(9):1330-1338.
[56] 赵雨恒,涂子滢,方醒艺,等.孟德尔随机化分析在多囊卵巢综合征病因研究中的应用[J].现代医学,2024,52(4):648-652.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 885737 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626

苏ICP备09058541