Objective: To Explore the role of meteorological factors and internet data in predicting influenza cases in Suzhou City, and construct influenza prediction models for Suzhou City based on the method of machine learning. Methods: We collected meteorological data, influenza surveillance data, and internet influenza keyword search data in Suzhou from January 1, 2012, to December 29, 2019. Then, we used cross-correlation analysis to test the lagged relationships between the preliminary screened meteorological factors, influenza keywords, and influenza cases within a 4-week time frame. Based on the lagged correlation analysis, researchers further filtered the keywords. Utilizing the determined different types of keywords, influenza-like illness consultation rate and positive rate, we constructed influenza prediction models by using SARIMA, LSTM, and Att-LSTM methods. Finally, we evaluated each model using the Mean Squared Error(MSE), Mean Absolute Error(MAE), and Root Mean Squared Error(RMSE) metrics. Results: The fitting of the SARIMA model was relatively low, whereas the Att-LSTM model showed a high fitting degree, with its MSE, RMSE, and MAE values respectively being 0.055, 0.235 and 0.184. Conclusion: The Att-LSTM model, constructed based on meteorological, internet, and surveillance data, can significantly enhance predictive accuracy. The results will provide a scientific basis for more precise influenza prevention and control efforts in Suzhou. |
[1] AZZIZ BAUMGARTNER E,DAO C N,NASREEN S,et al.Seasonality,timing,and climate drivers of influenza activity worldwide[J].J Infect Dis,2012,206(6):838-846.
[2] UYEKI T M,HUI D S,ZAMBON M,et al.Influenza[J].Lancet,2022,400(10353):693-706.
[3] PAULES C,SUBBARAO K.Influenza[J].Lancet,2017,390(10095):697-708.
[4] ZHOU L,YANG H,PAN W,et al.Association between meteorological factors and the epidemics of influenza(sub)types in a subtropical basin of Southwest China[J].Epidemics,2022,41:100650.
[5] LI Z,LIU T,ZHU G,et al.Dengue Baidu search index data can improve the prediction of local dengue epidemic:a case study in Guangzhou,China[J].PLoS Negl Trop Dis,2017,11(3):e0005354.
[6] SYLVESTRE E,JOACHIM C,CÉCILIA-JOSEPH E,et al.Data-driven methods for dengue prediction and surveillance using real-world and big data:a systematic review[J].PLoS Negl Trop Dis,2022,16(1):e0010056.
[7] BEMPONG N E,RUIZ DE CASTAÑEDA R,SCHVTTE S,et al.Precision global health—the case of Ebola:a scoping review[J].J Glob Health,2019,9(1):010404.
[8] BARROS J M,DUGGAN J,REBHOLZ-SCHUHMANN D.The application of internet-based sources for public health surveillance(infoveillance):systematic review[J].J Med Internet Res,2020,22(3):e13680.
[9] LI K,LIU M,FENG Y,et al.Using Baidu search engine to monitor AIDS epidemics inform for targeted intervention of HIV/AIDS in China[J].Sci Rep,2019,9(1):320.
[10] GINSBERG J,MOHEBBI M H,PATEL R S,et al.Detecting influenza epidemics using search engine query data[J].Nature,2009,457(7232):1012-1014.
[11] LU F S,HATTAB M W,CLEMENTE C L,et al.Improved state-level influenza nowcasting in the United States leveraging internet-based data and network approaches[J].Nat Commun,2019,10(1):147.
[12] 薛红新,刘绕星,况立群,等.基于百度指数与机器学习方法的流感样病例预测[J].中国预防医学杂志,2023,24(8):788-794.
[13] 王力.基于气象因素和互联网搜索数据的流感疫情预测研究:以香港为例 [D].汕头:汕头大学,2017.
[14] ZHANG Y,YE C,YU J,et al.The complex associations of climate variability with seasonal influenza A and B virus transmission in subtropical Shanghai,China[J].Sci Total Environ,2020,701:134607.
[15] SERMAN E,THRASTARSON H T,FRANKLIN M,et al.Spatial variation in humidity and the onset of seasonal influenza across the contiguous United States[J].Geo Health,2022,6(2):e2021GH000469.
[16] 魏柯雯,任雅楠,马仲慧,等.2016—2021年北京市房山区流感样病例与病原学监测相关性分析[J].预防医学情报杂志,2023,39(2):7.
[17] 费俊梁,马成,王黎明,等.机器学习法优化髋关节置换术围手术期治疗策略[J].东南大学学报(医学版),2024,43(2):229-236. |