网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
血浆分离策略与提取方法对血浆DNA浓度的影响研究
作者:张晓敏 
单位:东南大学医院 检验科, 江苏 南京 210018
关键词:血浆DNA 提取方法 离心速度 DNA片段 
分类号:R446.11
出版年·卷·期(页码):2024·52·第九期(1420-1427)
摘要:

目的: 研究不同血浆分离策略与DNA提取方法对血浆DNA浓度的影响,以获得最适合用于血浆DNA检测分析的分离纯化方案。方法: 收集20例健康人群外周血样本,进行血浆分离方案和DNA提取方法的比较。利用实时定量PCR技术检测不同离心速度和常见的3种DNA提取方法获得的血浆DNA浓度,同时比较提取方法对血浆DNA长短片段回收率的影响。t-检验分析各组间差异。选择最适合的血浆DNA分离策略对10例异常妊娠样本与12例健康妊娠样本中胎儿DNA进行检测与分析。结果: 研究结果发现离心速度对血浆分离和DNA提取具有显著影响,3种离心策略获得的血浆DNA浓度,两两比较差异均具有统计学意义(P<0.05)。三步低速法、两步低速法和一步高速法获得的血浆DNA浓度分别为:(17.9±2.72)ng·mL-1、(30.4±4.26)ng·mL-1及(38.4±11.87)ng·mL-1。除高速离心法外,样本冷冻对血浆分离结果无显著影响。三种常见DNA提取方法的研究发现,试剂盒法获得的血浆DNA浓度为(20.02±1.26)ng·mL-1,显著低于经典酚氯仿法(29.35±2.91)ng·mL-1和碘化钠法(24.2±1.08 )ng·mL-1(P<0.05)。除酚氯仿法外,另两种提取法对血浆DNA长短片段的回收率差异有统计学意义(P<0.05),碘化钠法更适合短片段DNA的提取。利用两步低速法和碘化钠提取方法检测异常妊娠孕妇血浆DNA,结果发现子痫前期孕妇血浆中SRY基因浓度显著升高(P<0.05)。结论: 两步低速离心法分离血浆与碘化钠法提取DNA可广泛应用于血浆DNA分离纯化及检测分析,子痫前期孕妇血浆中胎儿DNA浓度显著增高,有望用于异常妊娠的大规模筛查。

Objective: To investigate the effects of different plasma separation strategies and DNA extraction methods on plasma DNA concentration in order to obtain the most suitable plasma DNA separation and purification strategy. Methods: The peripheral blood samples of 20 healthy people were collected for comparison of plasma separation with DNA extraction method. The plasma DNA concentration obtained from different centrifugation speed of plasma separation and three commonly used DNA extraction methods was measured by real-time quantitative PCR. The effect of different extraction methods on the recovery of different length of DNA fragments was also studied and compared. The differences in different groups were analyzed by student's t-test. The most suitable plasma DNA separation strategy was selected to detect and analyze fetal DNA in 10 abnormal pregnancy samples and 12 healthy pregnancy samples. Results: The results showed that the centrifugation speed had significant effect on the plasma separation and DNA extraction. The difference of plasma DNA concentration obtained with the three DNA extraction methods was statistically significant(P<0.05). The plasma DNA concentration obtained by the three-step low speed method, the two-step low speed method and the one-step high speed method was(17.9±2.72) ng·mL-1,(30.4±4.26) ng·mL-1L and(38.4±11.87) ng·mL-1 respectively. Sample freezing had no significant effect on plasma separation results except for high-speed centrifugation. The results of three DNA extraction methods showed that the plasma DNA concentration obtained by kit method(20.02±1.26) ng·mL-1 was significantly lower than that obtained by phenol chloroform method(29.35±2.91) ng·mL-1 and sodium iodide method(24.2±1.08 ) ng·mL-1(P<0.05).Except for the phenol-chloroform method, the other two extraction methods also had significant differences in the DNA fragments recovery(P<0.05), and sodium iodide method was more suitable for the extraction of short DNA fragments. The detection results of plasma DNA from pregnant women with abnormal pregnancy showed that the concentration of SRY gene in the plasma of preeclampsia was significantly increased(P<0.05). Conclusion: The two-step low speed centrifugation method for plasma separation and sodium iodide method for DNA extraction can be widely used for plasma DNA separation, purification, detection and analysis. Fetal DNA concentration in the plasma of preeclampsia pregnant women increases significantly, which is expected to be used for abnormal pregnancy screening.

参考文献:

[1] SHTUMPF M,PIROEVA K V,AGRAWAL S P,et al.NucPosDB:a database of nucleosome positioning in vivo and nucleosomics of cell-free DNA[J].Chromosoma,2022,131(1-2):19-28.
[2] MANDEL P,METAIS P.Les acides nucléiques du plasma sanguin chez l'homme[J].C R Acad Sci Paris,1948,142(3-4):241-243.
[3] GALARDI F,LUCA F,ROMAGNOLI D,BIAGIONI C,et al.Cell-free DNA-methylation-based methods and applications in oncology[J].Biomolecules,2020,10(12):1677.
[4] RANUCCI R.Cell-free DNA:applications in different diseases[J].Methods Mol Biol,2019,1909:3-12.
[5] RUPPERT T,ROTH A,KOLLMEIER J,et al.Cell-free DNA extraction from urine of lung cancer patients and healthy individuals:evaluation of a simple method using sample volume up-scaling[J].J Clin Lab Anal,2023,37(21-22):e24984.
[6] PISAREVA E,ROCH B,SANCHEZ C,et al.Comparison of the structures and topologies of plasma extracted circulating nuclear and mitochondrial cell-free DNA[J].Front Genet,2023,14:1104732.
[7] LEAL A I C,MATHIOS D,JAKUBOWSKI D,et al:Cell-free DNA fragmentomes in the diagnostic evaluation of patients with symptoms suggestive of lung cancer[J].Chest,2023,164(4):1019-1027.
[8] LO Y M,CHAN L Y,CHAN A T et al.Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma[J].Cancer Res,1999,59(21):5452-5455.
[9] LO Y M.Fetal nucleic acids in maternal plasma[J].Ann N Y Acad Sci,2008,1137:140-143.
[10] GAITSCH H,FRANKLIN R J M,REICH D S.Cell-free DNA-based liquid biopsies in neurology[J].Brain,2023,146(5):1758-1774.
[11] RAYMOND Y,FERNANDO S,MENEZES M,et al.Placental,maternal,fetal,and technical origins of false-positive cell-free DNA screening results[J].Am J Obstet Gynecol,2024,230(4):381-389.
[12] NORTON M E.Cell-free DNA screening for aneuploidy[J].Clin Obstet Gynecol,2023,66(3):557-567.
[13] PALOMAKI G E,LAMBERT-MESSERLIAN G M,FULLERTON D,et al.Cell-free DNA-based prenatal screening via rolling circle amplification:identifying and resolving analytic issues[J].J Med Screen,2023,30(4):168-174.
[14] HABER D A,VELCULESCU V E.Blood-based analyses of cancer:circulating tumor cells and circulating tumor DNA[J].Cancer discovery,2014,4(6):650-661.
[15] JACOB R R,SAXENA R,VERMA I C.Does Formaldehyde increase cell free DNA in maternal plasma specimens?[J].Lab Med,2016,47(4):286-292.
[16] DHALLAN R,AU W C,MATTAGAJASINGH S,et al.Methods to increase the percentage of free fetal DNA recovered from the maternal circulation[J].JAMA,2004,291(9):1114-1119.
[17] BOUTONNET A,PRADINES A,MANO M,et al.Size and concentration of cell-free dna measured directly from blood plasma,without prior DNA extraction[J].Anal Chem,2023,95(24):9263-9270.
[18] ALIAS A B,CHIANG C E,HUANG H Y,et al.Extraction of cell-free DNA from an embryo-culture medium using micro-scale bio-reagents on EWOD[J].Sci Rep,2020,10(1):9708.
[19] 章伟玲,张璨,韩晴,等.血清游离DNA ATM启动子甲基化对局部晚期宫颈鳞癌患者放射抗性的预测价值[J].东南大学学报(医学版),2023,42(1):116-124.
[20] HATAMI A,SAADATMAND M,GARSHASBI M.Cell-free fetal DNA(cffDNA) extraction from whole blood by using a fully automatic centrifugal microfluidic device based on displacement of magnetic silica beads[J].Talanta,2024,267:125245.
[21] SILVA R C D,DE LIMA S C,DOS SANTOS REIS W P M,et al.Comparison of DNA extraction methods for COVID-19 host genetics studies[J].PLoS One,2023,18(10):e0287551.
[22] ISHIZAWA M,KOBAYASHI Y,MIYAMURA T,et al.Simple procedure of DNA isolation from human serum[J].Nucleic Acids Res,1991,19(20):5792.
[23] DAWSON P,BUYUKYAVUZ A,IONITA C,et al.Effects of DNA extraction methods on the real time PCR quantification of Campylobacter jejuni,Campylobacter coli,and Campylobacter lari in chicken feces and ceca contents[J].Poult Sci,2023,102(2):102369.
[24] AL-ZEBARI S,AL-ALLAWI N A,NERWEYI F.Beta Globin gene cluster haplotypes in beta thalassemia in the kurdistan region of Iraq[J].Hemoglobin 2023,47(3):111-117.
[25] KOLENDA T,GRACZYK Z,ZARSKA B,et al.SRY-related transcription factors in head and neck squamous cell carcinomas:in silico based analysis[J].Curr Issues Mol Biol,2023,45(12):9431-9449.
[26] MISHRA P,SINGH U,PANDEY C M,et al.Application of student's t-test,analysis of variance,and covariance[J].Ann Card Anaesth,2019,22(4):407-411.
[27] LIU Q,WANG L.t-Test and ANOVA for data with ceiling and/or floor effects[J].Behav Res Methods,2021,53(1):264-277.
[28] LV K,YANG X,LI Z,et al.Circulating tumor DNA detection in peripheral blood in postoperative efficacy evaluation and recurrence risk prediction of lung cancer[J].Cell Mol Biol(Noisy-le-grand),2022,67(5):51-56.
[29] LO Y M,CORBETTA N,CHAMBERLAIN P F,et al.Presence of fetal DNA in maternal plasma and serum[J].Lancet,1997,350(9076):485-487.
[30] WITHANAGE M H H,LIANG H,ZENG E.RNA-seq experiment and data analysis[J].Methods Mol Biol,2022,2418:405-424.
[31] YIN Y,BUTLER C,ZHANG Q.Challenges in the application of NGS in the clinical laboratory[J].Hum Immunol,2021,82(11):812-819.
[32] LIN C,LIU X,ZHENG B,et al.Liquid biopsy,ctDNA diagnosis through NGS[J].Life(Basel),2021,11(9):890.
[33] SPIEGL B,KAPIDZIC F,RONER S,et al.GCparagon:evaluating and correcting GC biases in cell-free DNA at the fragment level[J].NAR Genom Bioinform,2023,5(4):lqad102.
[34] JORGENSEN M W,MICEIKAITE I,LARSEN M J.nanoNIPT:short-fragment nanopore sequencing of cell-free DNA for non-invasive prenatal testing of fetal aneuploidies and sex chromosome aberrations[J].Prenat Diagn,2023,43(3):314-317.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 940717 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626

苏ICP备09058541