网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
基于深度学习算法从X线图像识别手关节炎的诊断研究
作者:杨丽1  王欢1  王婷婷2  吴建红2 
单位:1. 川北医学院 临床医学院, 四川 南充 637000;
2. 达州市中心医院 风湿免疫科, 四川 达州 635000
关键词:深度学习 X线图像 类风湿关节炎 手骨关节炎 辅助诊断 
分类号:R593.22
出版年·卷·期(页码):2024·52·第七期(1043-1049)
摘要:

目的:基于深度学习算法构建一种从手X线图像中识别类风湿关节炎(RA)和手骨关节炎(OA)的诊断模型。方法:回顾性纳入2017年1月至2023年4月在达州市中心医院被诊断为RA的509例患者的960张单手X线图像和2016年1月至2023年4月在达州市中心医院被诊断为手OA的112例患者的216张单手X线图像。利用人工智能中的深度学习算法构建模型,分别对RA和手OA患者X线图像的目标关节进行检测,并进行the modified Sharp/van der Heijde Score(SHS)和Kellgren & Lawrence(K-L)分级。通过测试集评估模型的性能,最终建立从X线图像中自动完成RA和手OA骨破坏分级的模型。结果:模型在RA目标关节检测及其骨破坏的关节间隙狭窄程度分类方面,健康关节、轻度骨破坏关节、重度骨破坏关节和所有关节的精度-召回率曲线下面积(PR-AUC)分别为90.7%、76.3%、76.6%和81.2%。模型在手OA的目标关节检测及其骨破坏的关节间隙狭窄和骨赘程度分类方面,健康关节、轻度骨破坏关节、重度骨破坏关节和所有关节的PR-AUC分别为94.5%、93.8%、86.9%和91.7%。结论:本研究构建的深度学习诊断模型,能快速准确地识别RA和手OA患者X线图像中的目标关节,同时做出骨破坏的分级,具有良好的诊断效能,能辅助医生诊断RA和手OA。

Objective: Construction of a diagnostic model for recognizing rheumatoid arthritis(RA) and hand osteoarthritis(OA) from hand X-ray images based on a deep learning algorithm. Methods: 960 single hand X-ray images of 509 patients diagnosed with RA at Dazhou Central Hospital from January 2017 to April 2023 and 216 single hand X-ray images of 112 patients diagnosed with hand OA at Dazhou Central Hospital from January 2016 to April 2023 were included retrospectively.Deep learning algorithms in artificial intelligence were utilized to construct model to detect the target joints in X-ray images of patients with RA and hand OA, respectively, and to grade the target joints with the modified Sharp/van der Heijde Score(SHS) and Kellgren & Lawrence(K-L). The performance of the model was evaluated through a test set, culminating in the creation of a model that automates the grading of RA and OA bone destruction from X-ray images. Results: The area under the precision-recall curve(PR-AUC) of the model in terms of RA target joint detection and classification of the degree of joint space narrowing for bone destruction in the target joints was 90.7%, 76.3%, 76.6%, and 81.2% for healthy joints, mildly bone-damaged joints, severely bone-damaged joints, and all joints, respectively. The PR-AUC of the model in terms of hand OA target joint detection and classification of the degree of joint space narrowing for bone destruction in the target joints was 94.5%, 93.8%, 86.9%, and 91.7% for healthy joints, mildly bone-damaged joints, severely bone-damaged joints, and all joints, respectively. Conclusion: The deep learning diagnostic model constructed in this study can quickly and accurately identify the target joints in the X-ray images of patients with RA and hand OA, as well as make the grading of bone destruction, which has good diagnostic efficacy and can assist doctors in diagnosing RA and hand OA.

参考文献:

[1] TANG C H.Research of pathogenesis and novel therapeutics in arthritis[J].Int J Mol Sci,2019,20(7):1646.
[2] SAFIRI S,KOLAHI A A,HOY D,et al.Global,regional and national burden of rheumatoid arthritis 1990-2017:a systematic analysis of the global burden of disease study 2017[J].Ann Rheum Dis,2019,78(11):1463-1471.
[3] JANG S,LEE K,JU J H.Recent updates of diagnosis,pathophysiology,and treatment on osteoarthritis of the knee[J].Int J Mol Sci,2021,22(5):2619.
[4] CUSH J J.Rheumatoid arthritis early diagnosis and treatment[J].Med Clin North Am,2021(2):105.
[5] VAN DER HEIJDE D,KARTMAN C E,XIE L,et al.Radiographic progression of structural joint damage over 5 years of baricitinib treatment in patients with rheumatoid arthritis:results from RA-BEYOND[J].J Rheumatol,2022,49(2):133-141.
[6] WEN J,LIU J,XIN L,et al.Effective factors on sharp score in patients with rheumatoid arthritis:a retrospective study[J].BMC Musculoskelet Disord,2021,22(1):865.
[7] KOHN M D,SASSOON A A,FERNANDO N D.Classifications in brief:Kellgren-Lawrence classification of osteoarthritis[J].Clin Orthop Relat Res,2016,474(8):1886-1893.
[8] DEVAUCHELLE PENSEC V,SARAUX A,BERTHELOT J M,et al.Ability of hand radiographs to predict a further diagnosis of rheumatoid arthritis in patients with early arthritis[J].J Rheumatol,2001,28(12):2603-2607.
[9] PEREIRA D,RAMOS E,BRANCO J.Osteoarthritis[J].Acta Med Port,2015,28(1):99-106.
[10] ZHANG X,ZHOU X,LIN M,et al.ShuffleNet:an extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018.
[11] 丁健,张英霞,闫诺.实时动态人工智能在甲状腺癌超声诊断中的研究进展[J].现代医学,2023,51(11):1645-1650.
[12] WANG H J,SU C P,LAI C C,et al.Deep learning-based computer-aided diagnosis of rheumatoid arthritis with hand X-ray images conforming to modified total sharp/van der heijde score[J].Biomedicines,2022,10(6):1355.
[13] MIYAMA K,BISE R,IKEMURA S,et al.Deep learning-based automatic-bone-destruction-evaluation system using contextual information from other joints[J].Arthritis Res Ther,2022,24(1):227.
[14] OLSSON S,AKBARIAN E,LIND A,et al.Automating classification of osteoarthritis according to Kellgren-Lawrence in the knee using deep learning in an unfiltered adult population[J].BMC Musculoskelet Disord,2021,22(1):844.
[15] ÜRETEN K,ERBAY H,MARAŞ H H.Detection of rheumatoid arthritis from hand radiographs using a convolutional neural network[J].Clin Rheumatol,2020,39(4):969-974.
[16] ÜRETEN K,MARAŞ H H.Automated classification of rheumatoid arthritis,osteoarthritis,and normal hand radiographs with deep learning methods[J].J Digit Imaging,2022,35(2):193-199.
[17] RETEN K,ERBAY H,MARAS H H.Detection of hand osteoarthritis from hand radiographs using convolutional neural networks with transfer learning[J].Turkish J Electr Eng Comput Sci,2020(5):2968-2978.
[18] MATE G S,KURESHI A K,SINGH B K.An efficient CNN for hand X-Ray classification of rheumatoid arthritis[J].J Healthc Eng,2021,2021:6712785.
[19] SWIECICKI A,LI N,O'DONNELL J,et al.Deep learning-based algorithm for assessment of knee osteoarthritis severity in radiographs matches performance of radiologists[J].Comput Biol Med,2021,133:104334.
[20] GU H,LI K,COLGLAZIER R,et al.Automated grading of radiographic knee osteoarthritis severity combined with joint space narrowing[J].Elect Eng System Sci,2022,22(3):08914.
[21] ZHANG B,TAN J,CHO K,et al.Attention-based CNN for KL grade classification:data from the osteoarthritis initiative[C]//2020 IEEE 17th International Symposium on Biomedical Imaging(ISBI).Piscataway:IEEE,2020.
[22] 马明昌,李永杰,徐国胜,等.膝骨关节炎X线辅助诊断模型建立的临床应用初探[J].中华骨与关节外科杂志,2023,16(2):152-158.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 851884 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

本系统由北京博渊星辰网络科技有限公司设计开发 技术支持电话:010-63361626

苏ICP备09058541