网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
载药生物陶瓷类缓释系统治疗骨髓炎的研究进展
作者:叶开1  仵博宇1  黄晓夏1  王江华2  滕勇2  刘涛2 
单位:1. 新疆医科大学 研究生院, 新疆 乌鲁木齐 830000;
2. 中国人民解放军新疆军区总医院 脊柱外科, 新疆 乌鲁木齐 830000
关键词:骨髓炎 感染 传统治疗 载药 生物陶瓷 
分类号:R681.2
出版年·卷·期(页码):2023·51·第二期(256-264)
摘要:

骨髓炎的治疗在临床中仍是一个较为棘手的问题,与传统的手术清创和全身用药相比,局部抗生素给药系统可在感染区域提供持续释放、局部较高浓度的抗菌剂,同时避免抗生素全身治疗后的副作用和毒性,因此成为近年来的研究热点。其中,具有优异的生物活性、可降解性、骨诱导和骨传导能力的生物陶瓷类支架也被广泛纳入研究。本文概述了一些骨髓炎的传统疗法,并就负载抗生素的生物陶瓷类局部给药系统治疗骨髓炎方面的研究进展作一综述。

参考文献:

[1] CORTÉS-PENFIELD N W, KULKARNI P A.The history of antibiotic treatment of osteomyelitis[J].Open Forum Infect Dis, 2019, 6(5):z181.
[2] KAVANAGH N, RYAN E J, WIDAA A, et al.Staphylococcal osteomyelitis:disease progression, treatment challenges, and future directions[J].Clin Microbiol Rev, 2018, 31(2):e00084-17.
[3] MEBARKI M, COQUELIN L, LAYROLLE P, et al.Enhanced human bone marrow mesenchymal stromal cell adhesion on scaffolds promotes cell survival and bone formation[J].Acta Biomater, 2017, 59:94-107.
[4] SHEKHAWAT D, SINGH A, BANERJEE M K, et al.Bioceramic composites for orthopaedic applications:a comprehensive review of mechanical, biological, and microstructural properties[J].Ceram Int, 2021, 47(3):3013-3030.
[5] FENG C W, ZHANG K Q, HE R J, et al.Additive manufacturing of hydroxyapatite bioceramic scaffolds:Dispersion, digital light processing, sintering, mechanical properties, and biocompatibility[J].J Adv Ceramics, 2020, 9(3):360-373
[6] JODATI H, YILMAZ B, EVIS Z.Calcium zirconium silicate(baghdadite) ceramic as a biomaterial[J].Ceram Int, 2020, 46(14):21902-21909.
[7] KARGOZAR S, BAINO F, HAMZEHLOU S, et al.Bioactive glasses:sprouting angiogenesis in tissue engineering[J].Trends Biotechnol, 2018, 36(4):430-444.
[8] YAO Y, QIN W, XING B, et al.High performance hydroxyapatite ceramics and a triply periodic minimum surface structure fabricated by digital light processing 3D printing[J].J Adv Ceramics, 2021, 10(1):39-48.
[9] 徐卫东, 邵正海, 张玉发.有效足量抗生素配合清创手术感染保留置入假体的疗效分析[J].中国骨与关节损伤杂志, 2016, 31(4):349-352.
[10] 崔海滨, 李世平, 严越茂.跟骨骨折内固定术后并发症分析[J].华夏医学, 2017, 30(3):75-77.
[11] PITOCCO D, SPANU T, DI LEO M, et al.Diabetic foot infections:a comprehensive overview[J].Eur Rev Med Pharmacol Sci, 2019, 23(2 Suppl):26-37.
[12] COBB L H, PARK J, SWANSON E A, et al.CRISPR-Cas9 modified bacteriophage for treatment of staphylococcus aureus induced osteomyelitis and soft tissue infection[J].PLoS One, 2019, 14(11):e220421.
[13] SANDERS J, MAUFFREY C.Long bone osteomyelitis in adults:fundamental concepts and current techniques[J].Orthopedics, 2013, 36(5):368-375.
[14] URISH K L, CASSAT J E.Staphylococcus aureus osteomyelitis:bone, bugs, and surgery[J].Infect Immun, 2020, 88(7):e00932-19.
[15] SCOBLE P J, REILLY J, TILLOTSON G S.Real-world use of oritavancin for the treatment of osteomyelitis[J].Drugs Real World Outcomes, 2020, 7(Suppl 1):46-54.
[16] 张继党, 李宗玉, 谷铭勇, 等.开放植骨的研究进展[J].中国矫形外科杂志, 2014, 22(14):1288-1290.
[17] 郑煜, 张志忠, 旦明清.一期开放植骨治疗感染性骨折不愈合[J].中国骨与关节损伤杂志, 2011, 26(8):741-742.
[18] 张杨军.新型灌洗泵对胫骨慢性骨髓炎的治疗效果分析[J].人人健康, 2019(13):37.
[19] YASHENG T, MIJITI A, YUSHAN M, et al.Ozonated water lavage and physiological saline irrigation combined with vacuum-sealed drainage in the treatment of 18 cases of chronic osteomyelitis[J].J Int Med Res, 2021, 49(3):1221799082.
[20] 王江宁, 高磊.糖尿病足慢性创面治疗的新进展[J].中国修复重建外科杂志, 2018, 32(7):832-837.
[21] LEE Z H, ABDOU S A, RAMLY E P, et al.Larger free flap size is associated with increased complications in lower extremity trauma reconstruction[J].Microsurgery, 2020, 40(4):473-478.
[22] Pederson W C, Grome L.Microsurgical reconstruction of the lower extremity[J].Semin Plast Surg, 2019, 33(1):54-58.
[23] LI R G, ZENG C J, YUAN S, et al.Reconstruction of large area of deep wound in the foot and ankle with chimeric anterolateral thigh perforator flap[J].Orthop Surg, 2021, 13(5):1609-1617.
[24] 黄凯, 郭峭峰, 林炳远, 等.胫后动脉穿支蒂螺旋桨皮瓣联合植骨一期治疗胫骨远端创伤性骨髓炎[J].中华显微外科杂志, 2018, 41(1):66-68.
[25] 陈长顺, 胡祥, 郑前进, 等.胫后动脉穿支远端蒂复合组织瓣修复小腿远端创面[J].中国修复重建外科杂志, 2019, 33(1):75-79.
[26] ROBERTS H J, DESILVA G L.Can sural fasciocutaneous flaps be effective in patients older than 65?[J].Clin Orthop Relat Res, 2020, 478(7):1699-1700.
[27] 卜凡玉, 薛明宇, 王进, 等.改良诱导膜技术结合带蒂(肌)皮瓣治疗糖尿病患者胫骨慢性骨髓炎[J].中国修复重建外科杂志, 2021, 35(6):716-721.
[28] THABIT A K, FATANI D F, BAMAKHRAMA M S, et al.Antibiotic penetration into bone and joints:an updated review[J].Int J Infect Dis, 2019, 81:128-136.
[29] MASTERS E A, TROMBETTA R P, DE MESY B K, et al.Evolving concepts in bone infection:redefining "biofilm", "acute vs.chronic osteomyelitis", "the immune proteome" and "local antibiotic therapy"[J].Bone Res, 2019, 7:20.
[30] GEURTS J, VAN VUGT T, ARTS J.Use of contemporary biomaterials in chronic osteomyelitis treatment:clinical lessons learned and literature review[J].J Orthop Res, 2021, 39(2):258-264.
[31] BISTOLFI A, FERRACINI R, ALBANESE C, et al.PMMA-based bone cements and the problem of joint arthroplasty infections:status and new perspectives[J].Materials(Basel), 2019, 12(23):4002.
[32] VAN VUGT T A G, ARTS J J, GEURTS J A P.Antibiotic-loaded polymethylmethacrylate beads and spacers in treatment of orthopedic infections and the role of biofilm formation[J].Front Microbiol, 2019, 10:1626.
[33] SANZ-RUIZ P, MATAS-DIEZ J A, SANCHEZ-SOMOLINOS M, et al.Is the commercial antibiotic-loaded bone cement useful in prophylaxis and cost saving after knee and hip joint arthroplasty? The transatlantic paradox[J].J Arthroplasty, 2017, 32(4):1095-1099.
[34] GUELCHER S A, BROWN K V, LI B, et al.Dual-purpose bone grafts improve healing and reduce infection[J].J Orthop Trauma, 2011, 25(8):477-482.
[35] UNNITHAN A R, ARATHYRAM R S, KIM C S.Chapter 7-scaffolds with antibacterial properties[M]//THOMAS S, GROHENS Y, NINAN N.Nanotechnology applications for tissue engineering.Oxford:William Andrew Publishing, 2015:103-123.
[36] VALLET-REGÍ M, LOZANO D, GONZÁLEZ B, et al.Biomaterials against bone infection[J].Adv Healthc Mater, 2020, 9(13):e2000310.
[37] KARGOZAR S, MONTAZERIAN M, HAMZEHLOU S, et al.Mesoporous bioactive glasses:Promising platforms for antibacterial strategies[J].Acta Biomater, 2018, 81:1-19.
[38] ZHANG L, YANG G, JOHNSON B N, three-dimensional(3D) printed scaffold and material selection for bone repair[J].Acta Biomater, 2019, 84:16-33.
[39] NIKOLOVA M P, CHAVALI M S.Recent advances in biomaterials for 3D scaffolds:a review[J].Bioactive Materials, 2019, 4:271-292.
[40] ROSETI L, PARISI V, PETRETTA M, et al.Scaffolds for bone tissue engineering:state of the art and new perspectives[J].Mater Sci Eng C Mater Biol Appl, 2017, 78:1246-1262.
[41] CHEN Z, LI Z, LI J, et al.3D printing of ceramics:a review[J].J Eur Ceram Soc, 2019, 39(4):661-687.
[42] LIPSKY B A, SENNEVILLE É, ABBAS Z G, et al.Guidelines on the diagnosis and treatment of foot infection in persons with diabetes(IWGDF 2019 update)[J].Diabetes Metab Res Rev, 2020, 36(S1):e3280.
[43] HUTTING K H, AAN D S W, VAN NETTEN J J, et al.Surgical treatment of diabetic foot ulcers complicated by osteomyelitis with gentamicin-loaded calcium sulphate-hydroxyapatite biocomposite[J].J Clin Med, 2021, 10(2):371.
[44] NIAZI N S, DRAMPALOS E, MORRISSEY N, et al.Adjuvant antibiotic loaded bio composite in the management of diabetic foot osteomyelitis————a multicentre study[J].Foot(Edinb), 2019, 39:22-27.
[45] DRAMPALOS E, MOHAMMAD H R, KOSMIDIS C, et al.Single stage treatment of diabetic calcaneal osteomyelitis with an absorbable gentamicin-loaded calcium sulphate/hydroxyapatite biocomposite:the silo technique[J].Foot(Edinb), 2018, 34:40-44.
[46] HUTTING K H, STEGGE W, NETTEN J J V, et al.Surgical debridement and gentamicin-loaded calcium sulphate/hydroxyapatite bone void filling to treat diabetic foot osteomyelitis[J].Diabetic Foot J, 2019, 22(4):22-27.
[47] WHISSTOCK C, VOLPE A, NINKOVIC S, et al.Multidisciplinary approach for the management and treatment of diabetic foot infections with a resorbable, gentamicin-loaded bone graft substitute[J].J Clin Med, 2020, 9(11):3586.
[48] DVORZHINSKIY A, PERINO G, CHOJNOWSKI R, et al.Ceramic composite with gentamicin decreases persistent infection and increases bone formation in a rat model of debrided osteomyelitis[J].J Bone Joint Infect, 2021, 6(7):283-293.
[49] XIN J, XIONG Y, ZHANG X, et al.Self-adaptive antibacterial porous implants with sustainable responses for infected bone defect therapy[J].Adv Sci News, 2019, 29:1807915.
[50] HASAN R, SCHANER K, MULINTI P, et al.A bioglass-based antibiotic(vancomycin) releasing bone void filling putty to treat osteomyelitis and aid bone healing[J].Int J Mol Sci, 2021, 22(14):7736.
[51] LANG Z G, ZHANG X, GUO Q, et al.Clinical observations of vancomycin-loaded calcium phosphate cement in the 1-stage treatment of chronic osteomyelitis:a randomized trial[J].Ann Palliat Med, 2021, 10(6):6706-6714.
[52] BOYLE K K, SOSA B, OSAGIE L, et al.Vancomycin-laden calcium phosphatecalcium sulfate composite allows bone formation in a rat infection model[J].PLoS One, 2019, 14(9):e0222034.
[53] HUA H, WANG X, GUO J, et al.A comparison of the vancomycin calcium sulfate implantation versus fenestration decompression for the treatment of sclerosing osteomyelitis[J].BMC Musculoskelet Disord, 2021, 22(1):993.
[54] HASAN R, WOHLERS A, SHREFFLER J, et al.An antibiotic-releasing bone void filling(ABVF) putty for the treatment of osteomyelitis[J].Materials, 2020, 13(22):5080.
[55] FIUME E, BARBERI J, VERNÉ E, et al.Bioactive glasses:from parent 45s5 composition to scaffold-assisted tissue-healing therapies[J].J Funct Biomater, 2018, 9(1):24.
[56] CAO Z, JIANG D, YAN L, et al.In vitro and in vivo drug release and antibacterial properties of the novel vancomycin-loaded bone-like hydroxyapatite/poly amino acid scaffold[J].Int J Nanomedicine, 2017, 12:1841-1851.
[57] KRISHNAN A G, BISWAS R, MENON D, et al.Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of mrsa infected experimental osteomyelitis[J].Biomater Sci, 2020, 8(9):2653-2665.
[58] LV X F, ZHOU D M, SUN X H, et al.Nano sized hydroxyapatite-polylactic acid-vancomycin in alleviation of chronic osteomyelitis[J].Drug Des Devel Ther, 2022, 16:1983-1993.
[59] ZHOU J, ZHOU X G, WANG J W, et al.Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/b-tricalcium phosphate composite scaffold[J].Bone Joint Res, 2018, 7(1):46-57.
[60] CHENG T, QU H, ZHANG G, et al.Osteogenic and antibacterial properties of vancomycin-laden mesoporous bioglass/PLGA composite scaffolds for bone regeneration in infected bone defects[J].Artif Cells Nanomed Biotechnol, 2018, 46(8):1935-1947.
[61] RAJABI A, ESMAEILI A.Preparation of three-phase nanocomposite antimicrobial scaffold BCP/Gelatin/45S5 glass with drug vancomycin and BMP-2 loading for bone regeneration[J].Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2020, 606:7757.
[62] KANKILIC B, BAYRAMLI E, KORKUSUZ P, et al.Vancomycin containing pdlla and plga/beta-tcp inhibit biofilm formation but do not stimulate osteogenic transformation of human mesenchymal stem cells[J].Front Surg, 2022, 9:885241.
[63] MONDAL S, DOROZHKIN S V, PAL U.Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite[J].Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2018, 10(4):e1504.
[64] ZHOU P, WU J, XIA Y, et al.Loading BMP-2 on nanostructured hydroxyapatite microspheres for rapid bone regeneration[J].Int J Nanomedicine, 2018, 3:4083-4092.
[65] MOHD ZAFFARIN A S, NG S, NG M H, et al.Nano-hydroxyapatite as a delivery system for promoting bone regeneration in vivo:a systematic review[J].Nanomaterials(Basel, Switzerland), 2021, 11(10):2569.
[66] CHAMOUN K, FARAH M, ARAJ G, et al.Surveillance of antimicrobial resistance in lebanese hospitals:retrospective nationwide compiled data[J].Int J Infect Dis, 2016, 46:64-70.
[67] KUANG Z, DAI G, WAN R, et al.Osteogenic and antibacterial dual functions of a novel levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold[J].Genes Dis, 2021, 8(2):193-202.
[68] WANG Q, CHEN C, LIU W, et al.Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects[J].Sci Rep, 2017, 7:41808.
[69] 张东力, 刘文, 吴向东, 等.新型纳米羟基磷灰石/聚氨酯复合材料治疗慢性骨髓炎的实验研究[J].中国修复重建外科杂志, 2018, 32(7):880-886.
[70] BAKHSHESHI-RAD H R, CHEN X B, ISMAIL A F, et al.A new multifunctional monticellite-ciprofloxacin scaffold:preparation, bioactivity, biocompatibility, and antibacterial properties[J].Mater Chem Phys, 2019, 222:118-131.
[71] WANG Y, DING X, CHEN Y, et al.Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections[J].Biomaterials, 2016, 101:207-216.
[72] WEI J, WANG Y, JIANG J, et al.Development of an antibacterial bone graft by immobilization of levofloxacin hydrochloride-loaded mesoporous silica microspheres on a porous scaffold surface[J].J Biomed Nanotechnol, 2019, 15(5):1097-1105.
[73] WANG Y, GU H.Core-shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery[J].Adv Mater, 2015, 27(3):576-585.
[74] KHATOON S, HAN H S, LEE M, et al.Zwitterionic mesoporous nanoparticles with a bioresponsive gatekeeper for cancer therapy[J].Acta Biomater, 2016, 40:282-292.
[75] THABIT A K, FATANI D F, BAMAKHRAMA M S, et al.Antibiotic penetration into bone and joints:An updated review[J].Int J Infect Dis, 2019, 81:128-136.
[76] MANDELL J B, ORR S, KOCH J, et al.Large variations in clinical antibiotic activity against Staphylococcus aureus biofilms of periprosthetic joint infection isolates[J].J Orthop Res, 2019, 37(7):1604-1609.
[77] NABIYOUNI M, BRVCKNER T, ZHOU H, et al.Magnesium-based bioceramics in orthopedic applications[J].Acta Biomaterialia, 2018, 66:23-43.
[78] BAKHSHESHI-RAD H R, HAMZAH E, STAIGER M P, et al.Drug release, cytocompatibility, bioactivity, and antibacterial activity of doxycycline loaded Mg-Ca-TiO2 composite scaffold[J].Materials & Design, 2018, 139:212-221.
[79] WANG M, LI H, YANG Y, et al.A 3D-bioprinted scaffold with doxycycline-controlled bmp2-expressing cells for inducing bone regeneration and inhibiting bacterial infection[J].Bioact Mater, 2021, 6(5):1318-1329.
[80] BHASKARA RAO B V, MUKHERJI R, SHITRE G, et al.Controlled release of antimicrobial Cephalexin drug from silica microparticles[J].Mater Sci Eng C Mater Biol Appl, 2014, 34:9-14.
[81] PARIS J L, LAFUENTE-GOMEZ N, CABANAS M V, et al.Fabrication of a nanoparticle-containing 3D porous bone scaffold with proangiogenic and antibacterial properties[J].Acta Biomater, 2019, 86:441-449.
[82] ZHAO C, LIU W, ZHU M, et al.Bioceramic-based scaffolds with antibacterial function for bone tissue engineering:a review[J].Bioact Mater, 2022, 18:383-398.
[83] GRITSCH L, GRANEL H, CHARBONNEL N et al.Tailored therapeutic release from polycaprolactone-silica hybrids for the treatment of osteomyelitis:antibiotic rifampicin and osteogenic silicates[J].Biomater Sci, 2022, 10(8):1936-1951.
[84] QAYOOM I, TEOTIA A K, PANJLA A, et al.Local and sustained delivery of rifampicin from a bioactive ceramic carrier treats bone infection in rat tibia[J].ACS Infect Dis, 2020, 6(11):2938-2949.
[85] LEVACK A E, TURAJANE K, DRISCOLL D A, et al.Identifying alternative antibiotics that elute from calcium sulfate beads for treatment of orthopedic infections[J].J Orthop Res, 2022, 40(5):1143-1153.
[86] TROMBETTA R P, NINOMIYA M J, EL-ATAWNEH I M, et al.Calcium phosphate spacers for the local delivery of sitafloxacin and rifampin to treat orthopedic infections:efficacy and proof of concept in a mouse model of single-stage revision of device-associated osteomyelitis[J].Pharmaceutics, 2019, 11(2):94.
[87] INZANA J A, TROMBETTA R P, SCHWARZ E M, et al.3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection[J].Eur Cell Mater, 2015, 30:232-247.
[88] RUAN W, LI M, GUO Q, et al.Gastrocnemius muscle flap with vancomycin/gentamicin-calcium sulfate and autogenous iliac bone graft for the phase I treatment of localized osteomyelitis after tibial plateau fracture surgery[J].J Orthop Surg Res, 2021, 16(1):341.
[89] ELHESSY A H, RIVERA J C, SHU H T, et al.Intramedullary canal injection of vancomycin-and tobramycin-loaded calcium sulfate:a novel technique for the treatment of chronic intramedullary osteomyelitis[J].Strategies Trauma Limb Reconstr, 2022, 17(2):123-130.
[90] TROMBETTA R P, DUNMAN P M, SCHWARZ E M, et al.A high-throughput screening approach to repurpose FDA-approved drugs for bactericidal applications against staphylococcus aureus small-colony variants[J].mSphere, 2018, 3(5):e00422-18.
[91] 汪家庆, 李宏卫.石骨症的口腔颌面部表现病例报道一例并文献综述[J].现代医学, 2022, 50(8):1064-1068.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 752609 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

苏ICP备09058541