网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
脂肪酸代谢与肾脏纤维化关系的研究进展
作者:丁悦  李建中  卢国元 
单位:苏州大学附属第一医院 肾内科, 江苏 苏州 215006
关键词:肾脏 能量代谢 脂肪酸氧化 脂毒性 纤维化 靶向 
分类号:R692
出版年·卷·期(页码):2023·51·第一期(135-139)
摘要:

肾脏作为耗能最多的器官之一,正常的能量代谢是维持其细胞生长、增殖、功能所必需的。肾脏纤维化是多种原因所致的慢性肾脏病的共同病理结果。大量研究表明,脂肪酸代谢的改变在纤维化进展中发挥核心作用,过多的脂肪堆积或缺陷的脂肪酸氧化会增加肾脏脂毒性,直接导致纤维化的发展。本文针对脂肪酸代谢与肾纤维化发展之间的相互作用,综述其多种调控机制,并总结目前开发的抗肾脏纤维化药物。

参考文献:

[1] BOZIC M,CAUS M,RODRIGUES-DIEZ R R,et al.Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis[J].Nat Commun,2020,11(1):1943-1959.
[2] 陈娟,唐文庄,张瑞城,等.糖尿病肾病患者外周血微小RNA-30c表达与肾间质纤维化的关系[J].现代医学,2020,48(7):813-816.
[3] PENG H,WANG Q,LOU T,et al.Myokine mediated muscle-kidney crosstalk suppresses metabolic reprogramming and fibrosis in damaged kidneys[J].Nat Commun,2017,8(1):1493-1508.
[4] DHILLON P,PARK J,HURTADO D P C,et al.The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and differentiation[J].Cell Metab,2021,33(2):379-394.
[5] SOUZA A C,BOCHAROV A V,BARANOVA I N,et al.Antagonism of scavenger receptor CD36 by 5A peptide prevents chronic kidney disease progression in mice independent of blood pressure regulation[J].Kidney Int,2016,89(4):809-822.
[6] FERRO C J,MARK P B,KANBAY M,et al.Lipid management in patients with chronic kidney disease[J].Nat Rev Nephrol,2018,14(12):727-749.
[7] KANG H M,AHN S H,CHOI P,et al.Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development[J].Nat Med,2015,21(1):37-46.
[8] ALLISON S J.Sting activation by cytoplasmic mtDNA triggers renal inflammation and fibrosis[J].Nat Rev Nephrol,2019,15(11):661-662.
[9] MIGUEL V,TITUANA J,HERRERO J I,et al.Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis[J].J Clin Invest,2021,131(5):140-191.
[10] YUAN Q,LÜ Y,DING H,et al.CPT1α maintains phenotype of tubules via mitochondrial respiration during kidney injury and repair[J].Cell Death Dis,2021,12(8):792-804.
[11] GAO J,GU Z.The role of peroxisome proliferator-activated receptors in kidney diseases[J].Front Pharmacol,2022,13(5):832-842.
[12] 张锐,曾嘉,邓志军,等.PGC1α通过调控肾组织脂肪酸代谢在肾纤维化中发挥枢纽作用[J].中南大学学报(医学版),2022,47(6):786-793.
[13] PAWLAK M,LEFEBVRE P,STAELS B.Molecular mechanism of PPARα action and its impact on lipid metabolism,inflammation and fibrosis in non-alcoholic fatty liver disease[J].J Hepatol,2015,62(3):720-733.
[14] TRAN M T,ZSENGELLER Z K,BERG A H,et al.PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection[J].Nature,2016,531(7595):528-532.
[15] ZHANG L,LIU J,ZHOU F,et al.PGC-1α ameliorates kidney fibrosis in mice with diabetic kidney disease through an antioxidative mechanism[J].Mol Med Rep,2018,17(3):4490-4498.
[16] DUCASE G M,MITROFANOVA A,MALLELA S K,et al.ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes[J].J Clin Invest,2019,129(8):3387-3400.
[17] LI J,YANG Y,LI Q,et al.STAT6 contributes to renal fibrosis by modulating PPARα-mediated tubular fatty acid oxidation[J].Cell Death Dis,2022,13(1):66-77.
[18] CHUNG K W,HA S,KIM S M,et al.PPARα/β activation alleviates age-associated renal fibrosis in sprague dawley rats[J].J Gerontol A Biol Sci Med Sci,2020,75(3):452-458.
[19] PODRINI C,CASSINA L,BOLETTA A.Metabolic reprogramming and the role of mitochondria in polycystic kidney disease[J].Cell Signal,2020,67(2):109-140.
[20] PODRINI C,ROWE I,PAGLIARINI R,et al.Dissection of metabolic reprogramming in polycystic kidney disease reveals coordinated rewiring of bioenergetic pathways[J].Commun Biol,2018,1(5):194-208.
[21] LAKHIA R,YHESKEL M,FLATEN A,et al.PPARα agonist fenofibrate enhances fatty acid β-oxidation and attenuates polycystic kidney and liver disease in mice[J].Am J Physiol Renal Physiol,2018,314(1):122-131.
[22] HOUTEN S M,VIOLANTE S,VENTURA F V,et al.The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders[J].Annu Rev Physiol,2016,78(5):23-44.
[23] KHAN S,GAIVIN R,ABRAMOVICH C,et al.Fatty acid transport protein-2 regulates glycemic control and diabetic kidney disease progression[J].JCI Insight,2020,5(15):136-177.
[24] CHEN Y,YAN Q,LÜ M,et al.Involvement of FATP2-mediated tubular lipid metabolic reprogramming in renal fibrogenesis[J].Cell Death Dis,2020,11(11):994-1009.
[25] HARDIE D G,SCHAFFER B E,BRUNET A.AMPK:an energy-sensing pathway with multiple inputs and outputs[J].Trends Cell Biol,2016,26(3):190-201.
[26] SAMOVSKI D,SUN J,PIETKA T,et al.Regulation of AMPK activation by CD36 links fatty acid uptake to β-oxidation[J].Diabetes,2015,64(2):353-359.
[27] HUA W,HUANG H Z,TAN L T,et al.CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress[J].PLoS One,2015,10(5):1371-1385.
[28] TANAKA M,TAKAHASHI S,HIGASHIURA Y,et al.Circulating level of fatty acid-binding protein 4 is an independent predictor of metabolic dysfunction-associated fatty liver disease in middle-aged and elderly individuals[J].Diabetes Investig,2021,10(11):137-147.
[29] FURUHASHI M.Fatty acid-binding protein 4 in cardiovascular and metabolic diseases[J].Atheroscler Thromb,2019,26(3):216-232.
[30] QIAO Y,LIU L,YIN L,et al.FABP4 contributes to renal interstitial fibrosis via mediating inflammation and lipid metabolism[J].Cell Death Dis,2019,10(6):382-394.
[31] ZHOU S,WANG X,SHI J,et al.Serum fatty acid binding protein 4 levels are associated with abdominal aortic calcification in peritoneal dialysis patients[J].Ren Fail,2021,43(1):1539-1548.
[32] FENG Y,GUO F,XIA Z,et al.Inhibition of fatty acid-binding protein 4 attenuated kidney fibrosis by mediating macrophage-to-myofibroblast transition[J].Front Immunol,2020,11(2):566-578.
[33] DOROTEA D,KOYA D,HA H.Recent insights into SREBP as a direct mediator of kidney fibrosis via lipid-independent pathways[J].Front Pharmacol,2020,11(4):265-281.
[34] LI L,TAO S,GUO F,et al.Genetic and pharmacological inhibition of fatty acid-binding protein 4 alleviated inflammation and early fibrosis after toxin induced kidney injury[J].Int Immunopharmacol,2021,96(5):760-770.
[35] MENG X M,NIKOLIC-PATERSON D J,LAN H Y.TGF-β:the master regulator of fibrosis[J].Nat Rev Nephrol,2016,12(6):325-338.
[36] SONG M K,LEE J H,RYOO I G,et al.Bardoxolone ameliorates TGF-β1-associated renal fibrosis through Nrf2/Smad7 elevation[J].Free Radic Biol Med,2019,138(8):33-42.
[37] ZHAO X,KWAN J Y Y,YIP K,et al.Targeting metabolic dysregulation for fibrosis therapy[J].Nat Rev Drug Discov,2020,19(1):57-75.
[38] ZHAO X,PSARIANOS P,GHORAIE L S,et al.Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis[J].Nat Metab,2019,1(1):147-157.
[39] LAKSHMI S P,REDDY A T,REDDY R C.Transforming growth factor β suppresses peroxisome proliferator-activated receptor γ expression via both SMAD binding and novel TGF-β inhibitory elements[J].Biochem J,2017,474(9):1531-1546.
[40] CHEN Y,DAI Y,SONG K,et al.Pre-emptive pharmacological inhibition of fatty acid-binding protein 4 attenuates kidney fibrosis by reprogramming tubular lipid metabolism[J].Cell Death Dis,2021,12(6):572-586.
[41] MUSTAFA M,WANG T N,CHEN X,et al.SREBP inhibition ameliorates renal injury after unilateral ureteral obstruction[J].Am J Physiol Renal Physiol,2016,311(3):614-625.
[42] SRIVASTAVA S P,LI J,KITADA M,et al.SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic kidney with fibrosis[J].Cell Death Dis,2018,9(10):997-1011.
[43] HUA W,TENDIJKE P,KOSTIDIS S,et al.TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer[J].Cell Mol Life Sci,2020,77(11):2103-2123.
[44] ESCASANY E,LANZON B,GARCIA-CARRASCO A,et al.Transforming growth factor β3 deficiency promotes defective lipid metabolism and fibrosis in murine kidney[J].Dis Model Mech,2021,14(9):48-107.
[45] WANNER C,TONELLI M.Kidney disease:improving global outcomes lipid guideline development work group members.KDIGO clinical practice guideline for lipid management in CKD:summary of recommendation statements and clinical approach to the patient[J].Kidney Int,2014,85(6):1303-1309.
[46] AOMURA D,HARADA M,YAMADA Y,et al.Pemafibrate protects against fatty acid-induced nephropathy by maintaining renal fatty acid metabolism[J].Metabolites,2021,11(6):372-385.
[47] HUANG C C,CHOU C A,CHEN W Y,et al.Empagliflozin ameliorates free fatty acid induced-lipotoxicity in renal proximal tubular cells via the PPARγ/CD36 pathway in obese mice[J].Int J Mol Sci,2021,22(22):12408-12423.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 752102 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

苏ICP备09058541