网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
四环素对人牙龈成纤维细胞增殖及凋亡的影响
作者:张青 
单位:荆门市第一人民医院 口腔科, 湖北 荆门 448000
关键词:四环素 人牙龈成纤维细胞 增殖 凋亡 核因子-κB信号通路 
分类号:285.5
出版年·卷·期(页码):2022·50·第四期(465-471)
摘要:

目的:探讨四环素(TET)对人牙龈成纤维细胞(HGFs)增殖和凋亡的影响及其可能的作用机制。方法:体外培养HGFs,采用不同浓度(0、5、10、50、100、500、1 000、2 000、2 500 μg·ml-1)的TET干预HGFs,细胞计数法(CCK-8)检测TET对HGFs增殖的影响。0、10、100和2 000 μg·ml-1 TET培养细胞,分别作为对照组、低浓度组、中浓度组、高浓度组;倒置显微镜下观察TET对HGFs生长状态的影响,流式细胞术检测细胞周期的变化,Annexin V-FITC/PI双染色法检测细胞凋亡情况,酶联免疫吸附法(ELISA)检测肿瘤坏死因子-α(TNF-α)、细胞间黏附因子-1(ICAM-1)和白细胞介素-6(IL-6)的分泌情况,实时荧光定量PCR(qPCR)和蛋白质免疫印迹法(Western blotting)分析NF-κB信号通路相关蛋白的表达水平。结果:低浓度(10~50 μg·ml-1)TET能够促进HGFs的增殖,中浓度(100~1 000 μg·ml-1)、高浓度(2 000~2 500 μg·ml-1)TET均可抑制HGFs的增殖。低浓度TET对HGFs生长状态无明显影响,而中、高浓度TET组细胞呈现不同程度的不规则形状。低浓度TET组G0/G1期细胞比例增多,S期细胞比例减少,而中、高浓度TET组G0/G1期细胞比例减少,S期细胞比例增多。中、高浓度TET可促进HGFs凋亡。低浓度TET可抑制TNF-α、ICAM-1和IL-6的分泌,而中、高浓度TET可促进TNF-α、ICAM-1和IL-6的分泌。低浓度TET可促进NF-κB p65和IκBα蛋白磷酸化,而中、高浓度TET可抑制NF-κB p65和IκBα蛋白磷酸化。结论:中、高浓度TET可抑制HGFs增殖和细胞周期进程,并诱导细胞凋亡,但是低浓度TET对细胞增殖无明显影响,其作用机制可能与NF-κB信号通路的活化有关。

Objective:To investigate the effect and possible mechanism of tetracycline(TET) on the proliferation and apoptosis of human gingival fibroblasts(HGFs). Methods: HGFs were cultured in vitro, and different concentrations(0, 5, 10, 50, 100, 500, 1 000, 2 000, 2 500 μg·ml-1) of TET were used to intervene in HGFs, and the effect of TET on the proliferation of HGFs was detected by cytometry(CCK-8). The cells were cultured with 0, 10, 100 and 2 000 μg·ml-1 TET and divided into control group, low concentration group, medium concentration group and high concentration group; the effect of TET on the growth state of HGFs was observed under an inverted microscope, and the cell cycle and apoptosis were detected by flow cytometry; enzyme-linked immunosorbent assay(ELISA) was used to detect the secretion of tumor necrosis factor-α(TNF-α), intercellular adhesion factor-1(ICAM-1) and interleukin-6(IL-6). Real-time quantitative PCR(qPCR) and Western blotting were used to detect the expression levels of NF-κB signaling pathway related protein. Results: Low concentration(10~50 μg·ml-1) of TET could promote the proliferation of HGFs, and medium(100~1 000 μg·ml-1) and high(2 000~2 500 μg·ml-1) concentration of TET could inhibit the proliferation of HGFs. Low concentrations of TET had no significant effect on the growth state of HGFs, while cells in medium and high concentrations of TET showed irregular shapes to varying degrees. The proportion of cells in G0/G1 phase increased and the proportion of cells in S phase decreased in the low concentration TET group, while the proportion of cells in G0/G1 phase decreased and the proportion of cells in S phase increased in the middle and high concentration TET groups. Medium and high concentrations of TET could promote the apoptosis of HGFs.Low concentration of TET could inhibit the secretion of TNF-α, ICAM-1 and IL-6, while medium and high concentration of TET could promote the secretion of TNF-α, ICAM-1 and IL-6. Low concentration of TET could promote the phosphorylation of NF-κB p65 and IκBα proteins, while medium and high concentration of TET could inhibit the phosphorylation of NF-κB p65 and IκBα proteins. Conclusion: TET can inhibit the proliferation and cell cycle progression of HGFs, and induce cell apoptosis, but low concentrations of TET has no significant effect on cell proliferation, and its mechanism of action mayrelated to the activation of NF-κB signaling pathway.

参考文献:

[1] SRVASTAVA M C,SRIVASTAVA R,VERMA P K,et al.Metabolic syndrome and periodontal disease:an overview for physicians[J].J Family Med Prim Care,2019,8(11):3492-3495.
[2] HIRECHFELD J,HIGHAM J,CHATZISTAVRIANOU D,et al.Systemic disease or periodontal disease?Distinguishing causes of gingival inflammation:a guide for dental practitioners.Part 1:immune-mediated,autoinflammatory,and hereditary lesions[J].Br Dent J,2019,227(11):961-966.
[3] ISHAI A,OSBORNE M T,EL-KHOLY K,et al.Periodontal disease associates with arterial inflammation via potentiation of a hematopoietic-arterial axis[J].JACC Cardiovasc Imaging,2019,12(11 Pt 1):2271-2273.
[4] MARTIN V,RIBEIRO I A C,ALVES M M,et al.Understanding intracellular trafficking and anti-inflammatory effects of minocycline chitosan-nanoparticles in human gingival fibroblasts for periodontal disease treatment[J].Int J Pharm,2019,572:118821.
[5] FERNANDES G,VANYO S T,ALSHARIF S B A,et al.Strontium effects on human gingival fibroblasts[J].J Oral Implantol,2019,45(4):274-280.
[6] GOLUB L M,LEE H M.Periodontal therapeutics:current host-modulation agents and future directions[J].Periodontol 2000,2020,82(1):186-204.
[7] 葛少华,杨丕山,赵宁,等.四环素对人牙周膜成纤维细胞的生物学作用[J].华西口腔医学杂志,2004,22(5):376-378.
[8] ALQOBALY L,SABBAH W.The association between periodontal disease and root/coronal caries[J].Int J Dent Hyg,2020,18(1):99-106.
[9] 孙秀玲,符之熙,袁旺美.青春期龈炎患者龈下菌斑中牙周致病菌的变化特点及其相关因素分析[J].现代医学,2016,44(9):1186-1190.
[10] KOBAYASHI E,FUKIOKA-KOBAYASHI M,SCULEAN A,et al.Effects of platelet rich plasma (PRP) on human gingival fibroblast,osteoblast and periodontal ligament cell behaviour[J].BMC Oral Health,2017,17(1):91.
[11] LEE B S,LEE C C,WANG Y P,et al.Controlled-release of tetracycline and lovastatin by poly (D,L-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs[J].Int J Nanomedicine,2016,11:285-297.
[12] PRESHAW P M.Host modulation therapy with anti-inflammatory agents[J].Periodontol 2000,2018,76(1):131-149.
[13] MADHUMATHI K,RUBAIYA Y,DOBLE M,et al.Antibacterial,anti-inflammatory,and bone-regenerative dual-drug-loaded calcium phosphate nanocarriers-in vitro and in vivo studies[J].Drug Deliv Transl Res,2018,8(5):1066-1077.
[14] 饶小波,胡萍.牙周炎组织中NLRP3炎性小体及牙槽骨吸收相关细胞因子的表达量变化[J].现代医学,2021,49(12):1418-1421.
[15] PAN W,WANG Q,CHEN Q.The cytokine network involved in the host immune response to periodontitis[J].Int J Oral Sci,2019,11(3):30.
[16] KELLESARIAN S V,MALIGGI V R,MAJOKA H A,et al.Effect of laser-assisted scaling and root planing on the expression of pro-inflammatory cytokines in the gingival crevicular fluid of patients with chronic periodontitis:a systematic review[J].Photodiagnosis Photodyn Ther,2017,18:63-77.
[17] NARUISHI K,NAGATA T.Biological effects of interleukin-6 on gingival fibroblasts:cytokine regulation in periodontitis[J].J Cell Physiol,2018,233(9):6393-6400.
[18] KANG W,JIA Z,TANG D,et al.Fusobacterium nucleatum facilitates apoptosis,ROS generation,and inflammatory cytokine production by activating AKT/MAPK and NF-κB signaling pathways in human gingival fibroblasts[J].Oxid Med Cell Longev,2019,2019:1681972.
[19] CHANDRA R V,JAGETIA G C,BHAT K M.The attachment of V79 and human periodontal ligament fibroblasts on periodontally involved root surfaces following treatment with EDTA,citric acid,or tetracycline HCL:an SEM in vitro study[J].J Contemp Dent Pract,2006,7(1):44-59.
[20] HUANG J,XIONG T,ZHANG Z,et al.Inhibition of the receptor for advanced glycation inhibits lipopolysaccharide-mediated High mobility group protein B1 and interleukin-6 synthesis in human gingival fibroblasts through the NF-κB signaling pathway[J].Arch Oral Biol,2019,105:81-87.
[21] XIONG G,JI W,WANG F,et al.Quercetin inhibits inflammatory response induced by LPS from porphyromonas gingivalis in human gingival fibroblasts via suppressing NF-κB signaling pathway[J].Biomed Res Int,2019,2019:6282635.
[22] SONG H K,NOH E M,KIM J M,et al.Reversine inhibits MMP-3,IL-6 and IL-8 expression through suppression of ROS and JNK/AP-1 activation in interleukin-1β-stimulated human gingival fibroblasts[J].Arch Oral Biol,2019,108:104530.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 752492 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

苏ICP备09058541