网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
影响痛风发病与疗效遗传机制的研究进展
作者:许砚秋1 2  唐嘉琪2  李飞燕2  李成荫2  吴斌1 2 
单位:1. 重庆医科大学 中医药学院, 重庆 400016;
2. 重庆市中医院 风湿病科, 重庆 400016
关键词:痛风 发病机制 疗效 基因 综述 
分类号:R589.7
出版年·卷·期(页码):2021·40·第十期(1240-1244)
摘要:

随着痛风患病率的逐年升高,对于痛风的发病机制和降尿酸药物疗效的认识也逐渐加深。针对痛风发病的遗传机制,许多学者已从影响尿酸的合成、分泌及重吸收角度报道了许多相关基因。而介导炎症反应的基因包括TLR、NLRP3炎性小体和cGKII/PRKG2等同样在痛风急性发作中起到了重要作用。对于痛风患者的降尿酸治疗,药物选择的相关研究也进入基因层面。本文作者就影响痛风发作、降尿酸药物疗效及副作用的遗传机制进行综述。

参考文献:

[1] 刘颖, 马龙新.非布司他治疗痛风的临床疗效及其对患者生活质量和血尿酸、sICAM-1、TNF-α水平的影响[J]. 现代医学, 2019, 38(11):1310-1314.
[2] 张剑勇, 肖敏, 张薇, 等.痛风免疫遗传学机制研究进展[J]. 风湿病与关节炎, 2016, 5(10):74-76, 80.
[3] CHEN C J, TSENG C C, YEN J H, et al. ABCG2 contributes to the development of gout and hyperuricemia in a genome-wide association study[J]. Sci Rep, 2018, 8(1):3137.
[4] SCULLEY D G, DAWSON P A, EMMERSON B T, et al. A review of the molecular basis of hypoxanthine-guanine phosphoribosyltransferase(HPRT) deficiency[J]. Hum Genet, 1992, 90(3):195-207.
[5] ALANAZI M, AL-ARFAJ A S, ABDULJALEEL Z, et al. Novel hypoxanthine guanine phosphoribosyltransferase gene mutations in Saudi Arabian hyperuricemia patients[J]. Biomed Res Int, 2014, 2014:290325
[6] FU R, SUTCLIFFE D, ZHAO H, et al. Clinical severity in Lesch-Nyhan disease:the role of residual enzyme and compensatory pathways[J]. Mol Genet Metab, 2015, 114(1):55-61.
[7] BECKER M A, SMITH P R, TAYLOR W, et al. The genetic and functional basis of purine nucleotide feedback-resistant phosphoribosylpyrophosphate synthetase superactivity[J]. J Clin Invest, 1995, 96(5):2133-2141.
[8] CHEN P, LI J, MA J, et al. A small disturbance, but a serious disease:the possible mechanism of D52H-mutant of human PRS1 that causes gout[J]. IUBMB life, 2013, 65(6):518-525.
[9] MÓZNER O, BARTOS Z, ZÁMBÓ B.Cellular processing of the ABCG2 transporter-potential effects on gout and drug metabolism[J]. Cells, 2019, 8(10):1215.
[10] TAI V, MERRIMAN T R, DALBETH N.Genetic advances in gout:potential applications in clinical practice[J]. Curr Opin Rheumatol, 2019, 31(2):144-151.
[11] CLEOPHAS M C, JOOSTEN L A, STAMP L K, et al. ABCG2 polymorphisms in gout:insights into disease susceptibility and treatment approaches[J]. Pharmgenomics Pers Med, 2017, 10:129-142.
[12] JIRI M, ZHANG L, LAN B, et al. Genetic variation in the ABCG2 gene is associated with gout risk in the Chinese Han population[J]. Clin Rheumatol, 2016, 35(1):159-163.
[13] MATSUO H, YAMAMOTO K, NAKAOKA H, et al. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes[J]. Ann Rheum Dis, 2016, 75(4):652-659.
[14] HIGASHINO T, TAKADA T, NAKAOKA H, et al. Multiple common and rare variants of ABCG2 cause gout[J]. RMD OPEN, 2017, 3(2):e000464.
[15] KOLZ M, JOHNSON T, SANNA S, et al. Meta-analysis of 28, 141 individuals identifies common variants within five new loci that influence uric acid concentrations[J]. PLoS Genet, 2009, 5(6):e1000504.
[16] LI S, SANNA S, MASCHIO A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts[J]. PLoS Genet, 2007, 3(11):e194.
[17] MCARDLE P F, PARSA A, CHANG Y P, et al. Association of a common nonsynonymous variant in GLUT9 with serum uric acid levels in old order amish[J]. Arthritis Rheum, 2008, 58(9):2874-2881.
[18] VITART V, RUDAN I, HAYWARD C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout[J]. Nat Genet, 2008, 40(4):437-442.
[19] LEE Y H, SEO Y H, KIM J H, et al. Associations between SLC2A9 polymorphisms and gout susceptibility:a meta-analysis[J]. Z Rheumatol, 2017, 76(1):64-70.
[20] HAJISHENGALLIS G, LAMBRIS J D.Microbial manipulation of receptor crosstalk in innate immunity[J]. Nat Rev Immunol, 2011, 11(3):187-200.
[21] LEE C C, AVALOS A M, PLOEGH H L.Accessory molecules for Toll-like receptors and their function[J]. Nat Rev Immunol, 2012, 12(3):168-179.
[22] NOREEN M, SHAH M A, MALL S M, et al. TLR4 polymorphisms and disease susceptibility[J]. Inflamm Res, 2012, 61(3):177-188.
[23] QING Y F, ZHOU J G, ZHANG Q B, et al. Association of TLR4 Gene rs2149356 polymorphism with primary gouty arthritis in a case-control study[J]. PloS One, 2013, 8(5):e64845.
[24] CAI Y, PENG Y H, TANG Z, et al. Association of Toll-like receptor 2 polymorphisms with gout[J]. Biomed Rep, 2014, 2(2):292-296.
[25] MALAWISTA S E, DE-BOISFLEURY A C, NACCACHE P H.Inflammatory gout:observations over a half-century[J]. FASEB J, 2011, 25(12):4073-4078.
[26] POPA-NITA O, NACCACHE P H.Crystal-induced neutrophil activation[J]. Immunol Cell Biol, 2010, 88(1):32-40.
[27] LIU S, ZHOU Z, WANG C, et al. Associations between interleukin and interleukin receptor gene polymorphisms and risk of gout[J]. Sci Rep, 2015, 5:13887.
[28] KINGSBURY S R, CONAGHAN P G, MCDERMOTT M F.The role of the NLRP3 inflammasome in gout[J]. J Inflamm Res, 2011, 4:39-49.
[29] LIU S, YIN C, CHU N, et al. IL-8-251T/A and IL-12B 1188A/C polymorphisms are associated with gout in a Chinese male population[J]. Scand J Rheumatol, 2013, 42(2):150-158.
[30] LIU S, HE H, YU R, et al. The rs7517847 polymorphism in the IL-23R gene is associated with gout in a Chinese Han male population[J]. Mod Rheumatol, 2015, 25(3):449-452.
[31] CHANG S J, TSAI M H, KO Y C, et al. The cyclic GMP-dependent protein kinase II gene associates with gout disease:identified by genome-wide analysis and case-control study[J]. AnnRheum Dis, 2009, 68(7):1213-1219.
[32] LIAO W T, YOU H L, LI C, et al. Cyclic GMP-dependent protein kinase II is necessary for macrophage M1 polarization and phagocytosis via toll-like receptor 2[J]. J Mol Med(Berl), 2015, 93(5):523-533.
[33] WEN C C, YEE S W, LIANG X, et al. Genome-wide association study identifies ABCG2(BCRP) as an allopurinol transporter and a determinant of drug response[J]. Clin Pharmacol Ther, 2015, 97(5):518-525.
[34] ROBERTS R L, WALLACE M C, PHIPPS-GREEN A J, et al. ABCG2 loss-of-function polymorphism predicts poor response to allopurinol in patients with gout[J]. Pharmacogenomics J, 2017, 17(2):201-203.
[35] ZHANG K, LI C.ABCG2 gene polymorphism rs2231142 is associated with gout comorbidities but not allopurinol response in primary gout patients of a Chinese Han male population[J]. Hereditas, 2019, 156:26.
[36] 符婷, 尹如兰, 李立人, 等.痛风患者生活质量评价的研究进展[J]. 东南大学学报(医学版), 2017, 36(4):645-650.
[37] STAMP L K, TOPLESS R, MINER J N, et al. No association between ATP-binding cassette transporter G2 rs2231142(Q141K) and urate-lowering response to febuxostat[J]. Rheumatology(Oxford), 2019, 58(2):547-548.
[38] ENOMOTO A, KIMURA H, CHAIROUNGDUA A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels[J]. Nature, 2002, 417(6887):447-452.
[39] SHIN H J, TAKEDA M, ENOMOTO A, et al. Interactions of urate transporter URAT1 in human kidney with uricosuric drugs[J]. Nephrology(Carlton), 2011, 16(2):156-162.
[40] HUNG S I, CHUNG W H, LIOU L B, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol[J]. Proc Natl Acad Sci U S A, 2005, 102(11):4134-4139.
[41] YU K H, YU C Y, FANG Y F.Diagnostic utility of HLA-B*5801 screening in severe allopurinol hypersensitivity syndrome:an updated systematic review and meta-analysis[J]. Int J Rheum Dis, 2017, 20(9):1057-1071.
[42] CHENG H, YAN D, ZUO X, et al. A retrospective investigation of HLA-B*5801 in hyperuricemia patients in a Han population of China[J]. Pharmacogenet Genomics, 2018, 28(5):117-124.
[43] ALI Z K, KIM R J, YSLA F M.CYP2C9 polymorphisms:considerations in NSAID therapy[J]. Curr Opin Drug Discov Devel, 2009, 12(1):108-114.
[44] HIROTA T, EGUCHI S, IEIRI I.Impact of genetic polymorphisms in CYP2C9 and CYP2C19 on the pharmacokinetics of clinically used drugs[J]. Drug Metab Pharmacokinet, 2013, 28(1):28-37.
[45] ROBERTS R L, WALLACE M C, WRIGHT D F, et al. Frequency of CYP2C9 polymorphisms in Polynesian people and potential relevance to management of gout with benzbromarone[J]. Joint Bone Spine, 2014, 81(2):160-163.
[46] HE L, LI C, LIU X, et al. Comparative study on the interaction between 3 CYP2C9 allelic isoforms and benzbromarone by using LC-MS/MS method[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1070:97-103.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 752202 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

苏ICP备09058541