网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
晶状体蛋白结构解析进展
作者:商文文1  陈欣如2  陈雪艺1 
单位:1. 新疆医科大学第一附属医院 眼科, 新疆 乌鲁木齐 830054;
2. 新疆维吾尔族自治区疾病预防控制中心, 新疆 乌鲁木齐 830002
关键词:晶状体蛋白 结构解析 白内障 综述 
分类号:R776.1
出版年·卷·期(页码):2021·49·第九期(1122-1126)
摘要:

晶状体蛋白是晶状体内的主要可溶性结构蛋白,与白内障的形成密切相关,以往对白内障的形成注重遗传学方面的研究,然而生命活动真正的执行者却是蛋白质分子,对晶状体蛋白进行结构解析是理解其功能的基础。本文综述了几种主要的生物物理学方法及其在晶状体蛋白模型构建中的应用,尝试从结构学层面解释由于基因突变导致的白内障的形成,有望为阐明白内障的发生发展机理及药物研发提供一定的线索。

参考文献:

[1] SRINIVAS P, NARAHARI A, PETRASH JM, et al. Importance of eye lens α-crystallin heteropolymer with 3:1 αA to αB ratio:stability, aggregation, and modifications[J]. IUBMB Life.2010, 62(9):693-702.
[2] PÉREZ S, DE SANCTIS D.Glycoscience@Synchrotron:synchrotron radiation applied to structural glycoscience[J]. Beilstein J Org Chem, 2017, 13:1145-1167.
[3] BORSHCHEVSKIY V, ROUND E, EROFEEV I, et al. Low-dose X-ray radiation induces structural alterations in proteins[J]. Acta Crystallogr D Biol Crystallogr, 2014, 70(Pt 10):2675-2685.
[4] BARENDS T R, FOUCAR L, BOTHA S, et al. De novo protein crystal structure determination from X-ray free-electron laser data[J]. Nature, 2014, 505(7482):244-247.
[5] YOUSAF T, DERVENOULAS G, POLITIS M.Advances in MRI methodology[J]. Int Rev Neurobiol, 2018, 141:31-76.
[6] MARKLEY J L.View from nuclear magnetic resonance spectroscopy[J]. Adv Exp Med Biol, 2018, 1105:19-22.
[7] CARVER J A, LINDNER R A.NMR spectroscopy of alpha-crystallin.Insights into the structure, interactions and chaperone action of small heat-shock proteins[J]. Int J Biol Macromol, 1998, 22(3-4):197-209.
[8] WU Z, DELAGLIO F, WYATT K, et al. Solution structure of (gamma) S-crystallin by molecular fragment replacement NMR[J]. Protein Sci, 2005, 14(12):3101-3114.
[9] FRANK J.Cryo-electron microscopy as an investigative tool:the ribosome as an example[J]. Bioessays, 2001, 23(8):725-732.
[10] BECK M, BAUMEISTER W.Cryo-electron tomography:can it reveal the molecular sociology of cells in atomic detail?[J] Trends Cell Biol, 2016, 26(11):825-837.
[11] ROH S H, HRYC C F, JEONG H H, et al. Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM[J]. Proc Natl Acad Sci U S A, 2017, 114(31):8259-8264.
[12] RENAUD J P, CHARI A, CIFERRI C, et al. Cryo-EM in drug discovery:achievements, limitations and prospects[J]. Nat Rev Drug Discov, 2018, 17(7):471-492.
[13] VÉNIEN-BRYAN C, LI Z, VUILLARD L, et al. Cryo-electron microscopy and X-ray crystallography:complementary approaches to structural biology and drug discovery[J]. Acta Crystallogr F Struct Biol Commun, 2017, 73(Pt 4):174-183.
[14] CRAMER P.Structural molecular biology-a personal reflection on the occasion of John Kendrew's 100th birthday[J]. J Mol Bio, 2017, 429(17):2603-2610.
[15] HASLBECK M, PESCHEK J, BUCHNER J, et al. Structure and function of α-crystallins:traversing from in vitro to in vivo[J]. Biochim Biophys Acta, 2016, 1860(1 Pt B):149-166.
[16] KUNDU M, SEN P C, DAS K P.Structure, stability, and chaperone function of alphaA-crystallin:role of N-terminal region[J]. Biopolymers, 2007, 86(3):177-192.
[17] LAGANOWSKY A, BENESCH J L, LANDAU M, et al. Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function[J]. Protein Sci, 2010, 19(5):1031-1043.
[18] SELIVANOVA O M, GALZITSKAYA O V.Structural and functional peculiarities of α-crystallin[J]. Biology (Basel), 2020, 9(4):85.
[19] KAISER C J O, PETERS C, SCHMID P W N, et al. The structure and oxidation of the eye lens chaperone αA-crystallin[J]. Nat Struct Mol Biol, 2019, 26(12):1141-1150.
[20] BRAUN N, ZACHARIAS M, PESCHEK J, et al. Multiple molecular architectures of the eye lens chaperone αB-crystallin elucidated by a triple hybrid approach[J]. Proc Natl Acad Sci U S A, 2011, 108(51):20491-20496.
[21] HALEY D A, HORWITZ J, STEWART P L.The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure[J]. J Mol Biol, 1998, 277(1):27-35.
[22] KHOSHAMAN K, YOUSEFI R, TAMADDON A M, et al. The impact of different mutations at Arg54 on structure, chaperone-like activity and oligomerization state of human αA-crystallin:The pathomechanism underlying congenital cataract-causing mutations R54L, R54P and R54C[J]. Biochim Biophys Acta Proteins Proteom, 2017, 1865(5):604-618.
[23] GHAHRAMANI M, YOUSEFI R, KRIVANDIN A, et al. Structural and functional characterization of D109H and R69C mutant versions of human αB-crystallin:the biochemical pathomechanism underlying cataract and myopathy development[J]. Int J Biol Macromol, 2020, 146:1142-1160.
[24] ANDLEY U P.Crystallins in the eye:function and pathology[J]. Prog Retin Eye Res, 2007, 26(1):78-98.
[25] VAN RENS G L, HOL F A, DE JONG W W, et al. Presence of hybridizing DNA sequences homologous to bovine acidic and basic beta-crystallins in all classes of vertebrates[J]. J Mol Evol, 1991, 33(5):457-463.
[26] BAX B, LAPATTO R, NALINI V, et al. X-ray analysis of beta B2-crystallin and evolution of oligomeric lens proteins[J]. Nature, 1990, 347(6295):776-780.
[27] SMITH M A, BATEMAN O A, JAENICKE R, et al. Mutation of interfaces in domain-swapped human betaB2-crystallin[J]. Protein Sci, 2007, 16(4):615-625.
[28] XI Z, WHITLEY M J, GRONENBORN A M.Human βB2-crystallin forms a face-en-face dimer in solution:an integrated NMR and SAXS Study[J]. Structure, 2017, 25(3):496-505.
[29] BLUNDELL T, LINDLEY P, MILLER L, et al. The molecular structure and stability of the eye lens:x-ray analysis of gamma-crystallin Ⅱ[J]. Nature, 1981, 289(5800):771-717.
[30] SLINGSBY C, CLOUT N J.Structure of the crystallins[J]. Eye (Lond), 1999, 13(Pt 3b):395-402.
[31] PURKISS A G, BATEMAN O A, GOODFELLOW J M, et al. The X-ray crystal structure of human gamma S-crystallin C-terminal domain[J]. J Biol Chem, 2002, 277(6):4199-4205.
[32] VANITA V, SINGH J R, SINGH D, et al. Novel mutation in the gamma-S crystallin gene causing autosomal dominant cataract[J]. Mol Vis, 2009, 15:476-481.
[33] SPRAGUE-PIERCY M A, WONG E, ROSKAMP K W, et al. Human αB-crystallin discriminates between aggregation-prone and function-preserving variants of a client protein[J]. Biochim Biophys Acta Gen Subj, 2020, 1864(3):129502.
[34] ZHU S, XI X B, DUAN T L, et al. The cataract-causing mutation G75V promotes γS-crystallin aggregation by modifying and destabilizing the native structure[J]. Int J Biol Macromol, 2018, 117:807-814.
[35] ZHAO L, CHEN X J, ZHU J, et al. Lanosterol reverses protein aggregation in cataracts[J]. Nature, 2015, 523(7562):607-611.
[36] LIN H, OUYANG H, ZHU J, et al. Lens regeneration using endogenous stem cells with gain of visual function[J]. Nature, 2016, 531(7594):323-328.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 753193 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

苏ICP备09058541