网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
羟基红花黄色素A通过TLR8信号调节卵巢癌CD4+T细胞极化和免疫细胞因子的表达
作者:胡晓君  胡艳  雷磊  刘俊丽 
单位:陕西省肿瘤医院 妇瘤科, 陕西 西安 710061
关键词:羟基红花黄色素A Toll样受体8 卵巢癌 T细胞极化 免疫细胞因子 
分类号:R285.5;R737.31
出版年·卷·期(页码):2021·49·第九期(1096-1101)
摘要:

目的:探讨羟基红花黄色素A (HSYA)对卵巢癌细胞CD4+T细胞极化和免疫细胞因子的调节作用及其机制。方法:将CD4+T细胞和卵巢癌SKOV3细胞进行体外共培养。共培养的细胞分为对照组、HSYA组(2 μg·ml-1的HSYA处理共培养体系处理24 h)、Toll样受体(TLR)8的拮抗剂CU-CPT9a组(共培养体系中加入5 μg·ml-1 CU-CPT9a处理24 h)、HSYA+CU-CPT9a组(共培养体系中加入2μg·ml-1的HSYA和5 μg·ml-1CU-CPT9a处理24 h)、HSYA+Motolimod组(共培养体系中加入2 μg·ml-1的HSYA和4.5 μg·ml-1TLR8的激动剂Motolimod处理24 h)。流式细胞术对体系中Th1、Th17和Th2细胞进行检测分析。使用酶联免疫吸附测定法检测IL-1β、肿瘤坏死因子(TNF)-α、IL-4、IL-10的水平。蛋白质印迹法检测TLR8、p65、磷酸化的p65(p-p65)及核因子κB抑制因子α(IκBα)的水平。结果: HSYA组的Th1细胞和Th17细胞的百分比及IL-1β、TNF-α、TLR8、p65和p-p65的表达水平均低于对照组(P<0.05),而IL-4、IL-10和IκBα的表达水平高于对照组(P<0.05)。另外,与HSYA组相比,CU-CPT9a联合HSYA明显降低Th1细胞和Th17细胞的百分比(P<0.05),而且增加了Th2细胞的百分比(P<0.05)。另外,与HSYA组相比,HSYA+Motolimod组Th1细胞和Th17细胞百分比增加(P<0.05),Th2细胞百分比降低(P<0.05);IL-1β、TNF-α的表达上调(P<0.05),但IL-4、IL-10的表达水平下调(P<0.05)。结论:HSYA通过TLR8信号调节卵巢癌CD4+T细胞极化和免疫细胞因子的表达。

参考文献:

[1] CHOI Y J, KIM S Y, PARK H C, et al. Integrative immunologic and genomic characterization of brain metastasis from ovarian/peritoneal cancer[J]. Pathol Res Pract, 2019, 215(8):152404-152410.
[2] GHISONI E, IMBIMBO M, ZIMMERMANN S, et al. Ovarian cancer immunotherapy:turning up the heat[J]. Int J Mol Sci, 2019, 20(12):2927-2937.
[3] VAN DE DONK N W C J.Immunomodulatory effects of CD38-targeting antibodies[J]. Immunol Lett, 2018, 199(12):16-22.
[4] DHODAPKAR M V, BORRELLO I, COHEN A D, et al. Hematologic malignancies:plasma cell disorders[J]. Am Soc Clin Oncol Educ Book, 2017, 37(1):561-568.
[5] BORST J, AHRENDS T, B BAA N, et al. CD4+T cell help in cancer immunology and immunotherapy[J]. Nat Rev Immunol, 2018, 18(10):635-647.
[6] BRIGHTMAN S E, NARADIKIAN M S, MILLER A M, et al. Harnessing neoantigen specific CD4 T cells for cancer immunotherapy[J]. J Leukoc Biol, 2020, 107(4):625-633.
[7] CHEN Y Q, LI P C, PAN N, et al. Tumor-released autophagosomes induces CD4+ T cell-mediated immunosuppression via a TLR2-IL-6 cascade[J]. J Immunother Cancer, 2019, 7(1):178-186.
[8] MELSSEN M, SLINGLUFF C L Jr.Vaccines targeting helper T cells for cancer immunotherapy[J]. Curr Opin Immunol, 2017, 47(1):85-92.
[9] MAGEN A, NIE J, CIUCCI T, et al. Single-cell profiling defines transcriptomic signatures specific to tumor-reactive versus virus-responsive CD4+ T Cells[J]. Cell Rep, 2019, 29(10):3019-3032.
[10] BAI X, WANG W X, FU R J, et al. Therapeutic potential of hydroxysafflor yellow A on cardio-cerebrovascular diseases[J]. Front Pharmacol, 2020, 11(1):1265-1268.
[11] AO H, FENG W, PENG C.Hydroxysafflor yellow A:a promising therapeutic agent for a broad spectrum of diseases[J]. Evid Based Complement Alternat Med, 2018, 4(4):2018-2025.
[12] MA L, LIU L, MA Y, et al. The role of E-cadherin/β-catenin in hydroxysafflor yellow A inhibiting adhesion, invasion, migration and lung metastasis of hepatoma cells[J]. Biol Pharm Bull, 2017, 40(11):1706-1715.
[13] XI S Y, ZHANG Q, LIU C Y, et al. Effects of hydroxy safflower yellow-A on tumor capillary angiogenesis in transplanted human gastric adenocarcinoma BGC-823 tumors in nude mice[J]. J Tradit Chin Med, 2012, 32(13):243-248.
[14] WANG J, WANG P, GUI S, et al. Hydroxysafflor yellow A attenuates the apoptosis of peripheral blood CD4+ T lymphocytes in a murine model of sepsis[J]. Front Pharmacol, 2017, 6(8):613-627.
[15] WU M, CHEN X, LOU J, et al. Changes in regulatory T cells in patients with ovarian cancer undergoing surgery:preliminary results[J]. Int Immunopharmacol, 2017, 47(5):244-250.
[16] ZHANG S, KE X, ZENG S, et al. Analysis of CD8+ Treg cells in patients with ovarian cancer:a possible mechanism for immune impairment[J]. Cell Mol Immunol, 2015, 12(4):580-591.
[17] YE J, MA C, HSUEH E C, et al. Tumor-derived gammadelta regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence[J]. J Immunol, 2013, 190(4):2403-2414.
[18] DOULABI H, RASTIN M, SHABAHANGH H, et al. Analysis of Th22, Th17 and CD4+cells co-producing IL-17/IL-22 at different stages of human colon cancer[J]. Biomed Pharmacother, 2018, 103(5):1101-1106.
[19] MORTAZAVI S S, HAGHIGHAT S, MAHDAVI M.Recombinant PBP2a of methicillin-resistant S.aureus formulation in Alum and Montanide ISA266 adjuvants induced cellular and humoral immune responses with protection in Balb/C mice[J]. Microb Pathog, 2020, 140(1):103945-103956.
[20] FANTINI M C, FAVALE A, ONALI S, et al. Tumor infiltrating regulatory T cells in sporadic and colitis-associated colorectal cancer:the red little riding hood and the wolf[J]. Int J Mol Sci, 2020, 21(18):6744-6749.
[21] TANYI J L, BOBISSE S, OPHIR E, et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer[J]. Sci Transl Med, 2018, 10(436):eaao5931.
[22] LI Z, PENG Y, LI Y, et al. Glucose metabolism pattern of peripheral blood immune cells in myasthenia gravis patients[J]. Ann Transl Med, 2020, 8(9):577-587.
[23] MAGALHAES I, YOGEV O, MATTSSON J, et al. The Metabolic profile of tumor and virally infected cells shapes their microenvironment counteracting t cell immunity[J]. Front Immunol, 2019, 10(1):2309-2319.
[24] OHASHI T, AKAZAWA T, AOKI M, et al. Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity[J]. Int J Cancer, 2013, 1107133(5):1107-1118.
[25] AMIN A, MOKHDOMI T A, BUKHARI S, et al. Lung cancer cell-derived EDA-containing fibronectin induces an inflammatory response from monocytes and promotes metastatic tumor microenvironment[J]. J Cell Biochem, 2021, 121(1):112-113.
[26] HAN S, WANG W, WANG S, et al. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes[J]. Theranostics, 2021, 11(6):2892-2916.
[27] SHAY J W, HOMMA N, ZHOU R, et al. Abstracts from the 3rd International Genomic Medicine Conference[J]. BMC Genomics, 2016, 17(Suppl 6):487-492.
[28] WANG J, WANG P, GUI S, et al. Hydroxysafflor yellow a attenuates the apoptosis of peripheral blood CD4+ T lymphocytes in a murine model of sepsis[J]. Front Pharmacol, 2017, 8(1):613-629.
[29] MULLINS S R, VASILAKOS J P, DESCHLER K, et al. Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies[J]. J Immunother Cancer, 2019, 7(1):244-256.
[30] LI L Y, LIU X, SANDERS K L, et al. TLR8-mediated metabolic control of human treg function:a mechanistic target for cancer immunotherapy[J]. Cell Metab, 2019, 29(1):103-123.
[31] KANSY B, SHAYAN G, LANG S, et al. The effect of a neoadjuvant anti EGFR combinational therapy with a TLR8 agonist on the adaptive immune system in the tumor microenvironment of patients with head and neck cancer[J]. Lar Ro Otol, 2019, 98(S02):112-124.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 749753 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

苏ICP备09058541