网站首页期刊介绍通知公告编 委 会投稿须知电子期刊广告合作联系我们
最新消息:
长链非编码RNA影响腰椎间盘退行性变的研究进展
作者:张锦涛1  孙海飚2  韩晓强2 
单位:1. 山西医科大学 外科学教研室, 山西 太原 030001;
2. 山西医科大学附属第一医院 骨科, 山西 太原 030001
关键词:长链非编码RNA 腰椎间盘退变 信号通路 髓核细胞 
分类号:R681.5
出版年·卷·期(页码):2021·49·第五期(580-586)
摘要:

长链非编码RNA (lncRNA)在正常人和腰椎间盘退变(LDD)患者髓核细胞中的表达存在很大差异,它们通过竞争性地与微小RNA (miRNAs)结合调节mRNAs的表达等方式介导多种细胞信号通路,影响LDD的各种病理变化过程,主要包括髓核细胞的异常凋亡、增殖、分化、细胞外基质成分改变、自噬、炎性反应等。对lncRNAs的特异性调节可能成为治疗LDD的新方法。作者综述了近年来有关lncRNAs影响LDD的研究进展,为LDD的临床治疗研究提供新的思路。

参考文献:

[1] KONGSTED A, KENT P, AXEN I. What have we learned from ten years of trajectory research in low back pain?[J].BMC Musculoskelet Disord, 2016, 21(17):220-227.
[2] YANG G, LIAO W, SHEN M. Insight into neural mechanisms underlying discogenic back pain[J].J Int Med Res, 2018, 46(11):4427-4436.
[3] GEURTS J W, WILLEMS P C, KALLEWAARD J W. The impact of chronic discogenic low back pain:costs and patients' burden[J].Pain Res Manag, 2018, 46(96):180-186.
[4] ZHAO L, MANCHIKANTI L, KAYE A D. Treatment of discogenic low back pain:current treatment strategies and future options-a literature review[J].Curr Pain Headache Rep, 2019, 23(11):86-96.
[5] KOPP F, MENDELL J T. Functional classification and experimental dissection of long noncoding RNAs[J].Cell, 2018, 172(3):393-407.
[6] JARROUX J, MORILLON A, PINSKAYA M. History, discovery, and classification of lncRNAs[J].Adv Exp Med Biol, 2017, 1008:1-46.
[7] XU F, JIN L, JIN Y. Long noncoding RNAs in autoimmune diseases[J].J Biomed Mater Res A, 2019, 107(2):468-475.
[8] CHEN L L.Linking long noncoding RNA localization and function[J].Trends Biochem Sci, 2016, 41(9):761-772.
[9] ULITSKY I. Interactions between short and long noncoding RNAs[J].FEBS Lett, 2018, 592(17):2874-2883.
[10] NITSCHE A, STADLER P F. Evolutionary clues in lncRNAs[J].Wiley Interdiscip Rev RNA, 2017, 8(1):1376-1388.
[11] GAWRONSKI K A B, KIM J. Single cell transcriptomics of noncoding RNAs and their cell-specificity[J].Wiley Interdiscip Rev RNA, 2017,8(6):10-18.
[12] ABI-HANNA D, KERFERD J, PHAN K. Lumbar disk arthroplasty for degenerative disk disease:literature review[J].World Neurosurg, 2018, 109:188-196.
[13] UDEN S V, SILVA-CORREIA J, OLIVEIRA J M. Current strategies for treatment of intervertebral disc degeneration:substitution and regeneration possibilities[J].Biomater Res, 2017, 21:22-34.
[14] VERGROESEN P A, KINGMA I, EMANUEL K S. Mechanics and biology in intervertebral disc degeneration:a vicious circle[J].Osteoarthritis Cartilage, 2015, 23(7):1057-1065.
[15] KONOVALOV N A, NAZARENKO A G. Modern treatments for degenerative disc diseases of the lumbosacral spine. A literature review[J].Zh Vopr Neirokhir Im N N Burdenko, 2016, 80(4):102-108.
[16] FERRō F, COLANTONI A, HELMER-CITTERICH M. Revealing protein-lncRNA interaction[J].Brief Bioinform, 2016, 17(1):106-113.
[17] HAN Y J, BOATMAN S M, ZHANG J. LncRNA BLAT1 is upregulated in basal-like breast cancer through epigenetic modifications[J].Sci Rep, 2018, 8(1):15572-15579.
[18] RANSOHOFF J D, WEI Y, KHAVARI P A. The functions and unique features of long intergenic non-coding RNA[J].Nat Rev Mol Cell Biol, 2018, 19(3):143-157.
[19] WEI J W, HUANG K, YANG C. Non-coding RNAs as regulators in epigenetics(Review)[J].Oncol Rep, 2017, 37(1):3-9.
[20] WAN Z Y, SONG F, SUN Z. Aberrantly expressed long noncoding RNAs in human intervertebral disc degeneration:a microarray related study[J].Arthritis Res Ther, 2014, 16(5):465-474.
[21] GUO C, QI Y, QU J. Pathophysiological functions of the lncRNA TUG1[J].Curr Pharm Des, 2020, 26(6):688-700.
[22] CHEN J, JIA Y S, LIU G Z. Role of LncRNA TUG1 in intervertebral disc degeneration and nucleus pulposus cells via regulating Wnt/β-catenin signaling pathway[J].Biochem Biophys Res Commun, 2017, 491(3):668-674.
[23] TANG N, DONG Y, XIAO T. LncRNA TUG1 promotes the intervertebral disc degeneration and nucleus pulposus cell apoptosis though modulating miR-26a/HMGB1 axis and regulating NF-κB activation[J].Am J Transl Res, 2020, 12(9):5449-5464.
[24] XU X, HOU J, LÜ J. Overexpression of lncRNA GAS5 suppresses prostatic epithelial cell proliferation by regulating COX-2 in chronic non-bacterial prostatitis[J].Cell Cycle, 2019, 18(9):923-931.
[25] WANG Y, SONG Q, HUANG X. Long noncoding RNA GAS5 promotes apoptosis in primary nucleus pulposus cells derived from the human intervertebral disc via Bcl-2 downregulation and caspase-3 upregulation[J].Mol Med Rep, 2019, 19(3):2164-2172.
[26] ZHANG C, WANG B, ZHAO X. Iron deficiency accelerates intervertebral disc degeneration through affecting the stability of DNA polymerase epsilon complex[J].Am J Transl Res, 2018, 10(11):3430-3442.
[27] LI X, LOU Z, LIU J. Upregulation of the long noncoding RNA lncPolE contributes to intervertebral disc degeneration by negatively regulating DNA polymerase epsilon[J].Am J Transl Res, 2019, 11(5):2843-2854.
[28] SHAO T, HU Y, TANG W. The long noncoding RNA HOTAIR serves as a microRNA-34a-5p sponge to reduce nucleus pulposus cell apoptosis via a NOTCH1-mediated mechanism[J].Gene, 2019, 715:144-159.
[29] WANG X B, WANG H, LONG H Q. LINC00641 regulates autophagy and intervertebral disc degeneration by acting as a competitive endogenous RNA of miR-153-3p under nutrition deprivation stress[J].J Cell Physiol, 2019, 234(5):7115-7127.
[30] TAN H, ZHAO L, SONG R. The long noncoding RNA SNHG1 promotes nucleus pulposus cell proliferation through regulating miR-326 and CCND1[J].Am J Physiol Cell Physiol, 2018, 315(1):C21-C27.
[31] WANG X, LÜ G, LI G. LncRNA-RP11-296A18.3/miR-138/HIF1A pathway regulates the proliferation ECM synthesis of human nucleus pulposus cells(HNPCs)[J].J Cell Biochem, 2017, 118(12):4862-4871.
[32] WANG X, PENG L, GONG X. LncRNA-RMRP promotes nucleus pulposus cell proliferation through regulating miR-206 expression[J].J Cell Mol Med, 2018, 22(11):5468-5476.
[33] MI D, CAI C, ZHOU B. Long non-coding RNA FAF1 promotes intervertebral disc degeneration by targeting the Erk signaling pathway[J].Mol Med Rep, 2018, 17(2):3158-3163.
[34] LAN P H, LIU Z H, PEI Y J. Landscape of RNAs in human lumbar disc degeneration[J].Oncotarget, 2016, 7(39):63166-63176.
[35] RUAN Z, MA H, LI J. The long non-coding RNA NEAT1 contributes to extracellular matrix degradation in degenerative human nucleus pulposus cells[J].Exp Biol Med(Maywood), 2018, 243(7):595-600.
[36] WANG K, SONG Y, LIU W. The noncoding RNA linc-ADAMTS5 cooperates with RREB1 to protect from intervertebral disc degeneration through inhibiting ADAMTS5 expression[J].Clin Sci(Lond), 2017, 131(10):965-979.
[37] ZHAO K, ZHANG Y, YUAN H. Long noncoding RNA LINC00958 accelerates the proliferation and matrix degradation of the nucleus pulposus by regulating miR-203/SMAD3[J].Aging(Albany NY), 2019, 11(23):10814-10825.
[38] WEI R, CHEN Y, ZHAO Z. LncRNA FAM83H-AS1 induces nucleus pulposus cell growth via targeting the Notch signaling pathway[J].J Cell Physiol, 2019, 234(12):22163-22171.
[39] YANG Y, ZHONG Z, ZHAO Y. LincRNA-SLC20A1(SLC20A1) promotes extracellular matrix degradation in nucleus pulposus cells in human intervertebral disc degeneration by targeting the miR-31-5p/MMP3 axis[J].Int J Clin Exp Pathol, 2019, 12(9):3632-3643.
[40] XI Y, JIANG T, WANG W. Long non-coding HCG18 promotes intervertebral disc degeneration by sponging miR-146a-5p and regulating TRAF6 expression[J].Sci Rep, 2017, 7(1):13324-13336.
[41] ZHANG H, LI J, DUAN D. The role of lncRNA MALAT1 in intervertebral degenerative disc disease[J].Int J Clin Exp Pathol, 2017, 10(10):10611-10617.
[42] DENG R Y, HONG T, LI C Y. Long non-coding RNA zinc finger antisense 1 expression associates with increased disease risk, elevated disease severity and higher inflammatory cytokines levels in patients with lumbar disc degeneration[J].Medicine(Baltimore), 2019, 98(52):18462-18465.
[43] WANG X, ZOU M, LI J. LncRNA H19 targets miR-22 to modulate H2O2-induced deregulation in nucleus pulposus cell senescence, proliferation, and ECM synthesis through Wnt signaling[J].J Cell Biochem, 2018, 119(6):4990-5002.
[44] FENG G, ZHA Z, HUANG Y. Sustained and bioresponsive two-stage delivery of therapeutic miRNA via polyplex micelle-loaded injectable hydrogels for inhibition of intervertebral disc fibrosis[J].Adv Healthc Mater, 2018, 7(21):1800-1808.

服务与反馈:
文章下载】【发表评论】【查看评论】【加入收藏
提示:您还未登录,请登录!点此登录
您是第 750421 位访问者


 ©《现代医学》编辑部
联系电话:025-83272481;83272479
电子邮件: xdyx@pub.seu.edu.cn

苏ICP备09058541